Simulation calculation of weapon-grade plutonium production in pressurized water reactor

Author:

Xu Xue-Feng ,Fu Yuan-Guang ,Zhu Jian-Yu ,Li Rui ,Tian Dong-Feng ,Wu Jun ,Li Kai-Bo , , , ,

Abstract

The nuclear nonproliferation is a common objective for the international society, of which one of the most important issues is the nonproliferation of weapon-grade nuclear material. Plutonium is a by-product when nuclear reactors are operated. If a commercial power nuclear reactor operates without counting its economic benefits, it is possible that weapon-grade plutonium (WGPu) would be produced in the nuclear reactor with using uranium as nuclear fuel. In the paper, we quantitatively study the plutonium isotopic composition and yield of the WGPu produced in a pressurized water reactor (PWR), and thereby investigate the proliferation risk of commercial nuclear reactors. The properties of plutonium produced in the PWR are calculated by MCORGS, which is developed by us to link MCNP and ORIGENS for calculating the transport-burnup. For evaluating the changing behavior of plutonium isotopic ratio dependent on the cooling time after being discharged from a PWR, we add the model of calculating the depletion and decay properties of nuclear fuel into the MCORGS code system. In order to calculate the yield of WGPu produced in the PWR, we carry out the neutron and burnup calculations by using five reactor models. The simulation models and operation history are based on the configuration and parameters of Japanese Takahama-3 unit. According to the positions and proportions of UO2 fuel rods, burnable poison rods and guide tubes in Takahama-3 PWR, we build a PWR model of an infinite heterogeneous 66 pin cell lattice, carry out simulation calculation and explore the condition for WGPu existing in the two kinds of fuel rods. When the burnup of a UO2 fuel rod is no more than 4.7 MWd/kgU, it contains WGPu. When the burnup of a burnable poison rod is no more than 2.7 MWd/kgU, it contains WGPu. Therefore, the issue of WGPu production in PWR is transformed into the research of the spatial distribution of PWR burnup. In order to obtain the axial PWR burnup, we build an infinite fuel pin cell model in which the PWR is divided into 20 equal zones in the axial direction, and calculate PWR axial burnup distribution when it is operated at 9 typical powers of Takahama-3 PWR. It is found that the burnup value of the two ends of 1/20 section is worth 1/3 of the two middle ones. Based on the principle of neutron leakage in a PWR and the simulation results of a fuel assembly, we build a special PWR mode, in which the PWR is divided into 10 zones in radial direction, and obtain the radial distribution of PWR burnup after the first, the second and the third fuel cycle. Based on the WGPu existing condition and the spatial distribution of a PWR burnup, in this paper we present the exact position of WGPu contained in PWR core and the yield of WGPu in UO2 fuel rods. The calculation results indicate that the spent nuclear fuel with low burnup brings huge proliferation risk, of which the supervision should be strengthened.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3