Preparation and electrochemical performance of porous carbon nanosphere

Author:

Yang Xiu-Tao ,Liang Zhong-Guan ,Yuan Yu-Jia ,Yang Jun-Liang ,Xia Hui ,

Abstract

Nanostructured carbon materials possessing good mechanical properties, adsorption characteristics and electrochemical performances, are the most promising candidate for electrode materials of supercapacitors. Among all synthesis methods, hydrothermal synthesis of porous carbon nanosphere (PCNS) is mostly used. Structure-directing agent F108 (PEO132-PPO50-PEO132) has a similar function to popular agent F127(PEO106-PPO70-PEO106) and P123 (PEO20-PPO70-PEO20) used in hydrothermal synthesis, but has greater relative molecular mass and higher hydrophilic/hydrophobic volume ratio, so using block copolymer F108 as soft template will obtain PCNS with special physicochemical properties. In this paper, PCNS is prepared by post-processing, including carbonization and subsequent KOH activation, of phenolic resin nanoparticles obtained by hydrothermal synthesis through using phenolic resin as a carbon source and block copolymer F108 as a soft template. The as-prepared PCNS sample is characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction, nitrogen adsorption and FTIR, etc. The images of SEM, TEM and results of nitrogen adsorption show that the obtained PCNS has the advantages, such as uniform particle size about 120 nm, high spherical degree and large specific surface area of 1403 m2/g and also wide pore size distribution. The results show that post-processing has an important influence on the physicochemical property of PCNS sample such as specific surface area, pore size distribution, crystallinity and surface chemistry. The activation temperature plays an important role in forming pore structure as the specific area of PCNS sample increases from 519 m2g-1 to 1008 m2g-1 after activation at 700℃ (PCNS700), while the activation temperature changes to 900℃ (PCNS900), the specific area rises up to 1403 m2g-1. The pore size distributions show that the peaks are at the same position, which suggests that KOH activation at high temperature makes the primary pore of PCNS deeper. PCNS900 contains more mesopores than PCNS700, so it can be concluded that at the higher activation temperature, the deeper pores inside PCNS are formed, and it is worth noting that pores near 2 nm are largely produced when the temperature arrives at 900℃. KOH processing and high temperature processing contribute greatly to structural ordering, which means that PCNS samples are greatly graphitized. Last but not least, both KOH processing and high temperature processing reduce the number of functional groups on the surface of PCNS samples. Using PCNS samples as activated material to make electrodes, we study how the different physicochemical properties of PCNS samples affect the performance of PCNS electrode. As a result, PCNS700 and PCNS900 show notably larger specific capacitance than PCNS due to their great larger surface specific areas and more structural orderings in graphitic layer stacking. However, PCNS700 shows a lager specific capacitance of 146.75 F/g than PCNS900 (132 F/g) due to its higher number of surface functional groups than PCNS900, though its lower specific surface area. The pore size distribution has a huge influence on the supercapacitor rate capability as the PCNS900 which has more mesopores and the most structural orderings in graphitic layer stacking shows excellent rate capability as well as superior long-term cycling stability (97.5% capacitance retention over 10000 cycles). In summary, PCNS obtained by hydrothermal synthesis through using block copolymer F108 as soft template shows the special physicochemical properties which make it an ideal candidate for the electrode materials of supercapacitor. Moreover, the larger the specific area, more structural orderings in graphitic layer stacking, more appropriate content of mesopores and surface functional groups, the superior performance the electrode materials of surpercapacitor exhibit.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3