Frequency conversion sinusoidal chaotic neural network and its application

Author:

Hu Zhi-Qiang ,Li Wen-Jing ,Qiao Jun-Fei , ,

Abstract

The optimization performance of transiently chaotic neural network (TCNN) is affected by various factors such as chaotic characteristic, model parameters, and annealing function, and its capacity of global optimization is limited. It is demonstrated that the non-monotonic activation function can generate richer chaotic characteristic than the monotonic activation function in the TCNN model. Besides, the activation function involving neurobiological mechanism can not only reflect the rich brain activity in brain waves, but also enhance the non-linear dynamic characteristic, which may further improve the global optimization ability. Hence, a novel chaotic neuron model is proposed with the non-monotonic activation function based on the neurobiological mechanisms from the electroencephalogram. The electroencephalogram consists of five brain waves (i.e., , , , , and waves) which are defined by the quality and intensity of brain waves with different frequency bands ranging from 0.5 Hz to 100 Hz. The brain wave with a higher frequency and a lower amplitude represents a more active brain. Researches demonstrate that the five brain waves can be simplified into sinusoidal waves with different frequencies. Hence, a frequency conversion sinusoidal (FCS) function which has the consistent frequency range and features with brain waves is designed based on the above neurobiological mechanisms. Then a novel chaotic neuron model with non-monotonic activation function which is composed of the FCS function and sigmoid function, is proposed for richer chaotic dynamic characteristic. The reversed bifurcation and the Lyapunov exponent of the chaotic neuron are given and the dynamic system is analyzed, indicating that the proposed FCS neuron model owns richer chaotic dynamic characteristic than transiently chaotic neuron model due to its special non-monotonic activation function. Based on the neuron model, a novel transiently-chaotic neural networkfrequency conversion sinusoidal chaotic neural network (FCSCNN) is constructed and the basis of model parameter selection is provided as well. To validate the effectiveness of the proposed model, the FCSCNN is applied to nonlinear function optimization and 10-city, 30-city, 75-city traveling salesman problem. The experimental results show that 1) the FCSCNN has a good performance under the condition of moderate a, smaller cA(0) and 2(0); 2) on the basis of the appropriate model parameters, the FCSCNN has better global optimization ability and optimization accuracy than Hopfield neural network, TCNN, improved-TCNN due to its richer chaotic characteristic in complicated combinational optimization problem, especially in middle and large scale problem.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3