The protection of qudit states by weak measurement

Author:

Huang Jiang ,

Abstract

Liao Xiang-Ping et al.(Chin. Phys. B 23 020304, 2014) pointed out that the method of weak measurement and quantum weak measurement reversal can protect entanglement and improve the fidelity of three-qubit quantum state. We generalize the method of weak measurement to the case of qudit state in this paper. By using the operation of weak measurement and quantum weak measurement reversal, we investigate the evolution dynamics of fidelity and fidelity improvement for qudit state under amplitude damping decoherence. We compare two kinds of operations: one is to let the input qudit state cross the amplitude damping decoherence directly, and the other one is that we first make a weak measurement operation on the input qudit state, then through the amplitude damping decoherence, finally an operation of quantum weak measurement reversal is done with the output qudit state. We discuss the GHZ state, W state, CL state and some special separable states exactly and obtain the analytic expressions of fidelity and fidelity improvement for qudit state before and after the weak measurement and quantum weak measurement reversal operation. According to the analytic expressions we plot the evolution curves against its corresponding parameters. The effects of corresponding parameters are discussed and a susceptible protection region of the qudit state is also given in the context. The results show that the structure of qudit state is the determined factor to the effect of weak measurement and quantum weak measurement reversal. There are some different effects on the different structured qudit states. For entangled state, the fidelity of qudit GHZ state can be protected in a relatively big evolution region, most part of the fidelity improvement is in the upper part of the zero reference plane. While the fidelity of qudit W state can be improved effectively in the whole evolution region, which is a perfect protection. The evolution regulations of qudit CL state and Dick state are between evolution regulations of the GHZ state and W state. When we input some special separable qudit states which have similar structures to W state, their fidelity and fidelity improvement are almost the same as W state’s. It is demonstrated that the structure of qudit state is important for the weak measurement in a step. This work is meaningful for the quantum information process.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference46 articles.

1. Zhou S X 2002 Quantum Dynamics(Beijing:Higher Education Press) pp17-25(in Chinese)[周世勋2002量子力学(北京:高等教育出版社)第17–25页]

2. Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777

3. Nielsen M A, Chuang I L 2002 Quantum Computation and Quantum Informatin(Cambridge:Cambridge University Press) pp74-89

4. Zeng H F, Shao B, Yang L G, Li J, Zou J 2008 Chin. Phys. B 18 3265

5. Sun G H, Aoki M A, Dong S H 2013 Chin. Phys. B 22 050302

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3