Performance analysis of polarization-space-time adaptive processing for airborne polarization array multiple-input multiple-output radar

Author:

Wang Ting ,Zhao Yong-Jun ,Lai Tao ,Wang Jian-Tao ,

Abstract

In order to further improve the capabilities of clutter suppression and target detection in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP), the polarization-space-time adaptive processing (PSTAP) method based on polarization array MIMO radar is proposed. Firstly, by applying the novel polarization array to airborne MMO radar, the signal model of airborne polarization array MIMO radar PSTAP is established. Then based on the idea of resolution grid, the influence of clutter can be equivalent to the formation of independent point sources of clutter related to the clutter degree of freedom, and an equivalent expression for the covariance matrix in polarization array MIMO radar PSTAP is obtained. Next, combined with the equivalent covariance matrix, the signal-to-clutter-plus-noise ratio (SCNR) performance of the polarization array MIMO radar PSTAP is derived and analyzed. The effects of the polarization, spatial and temporal matching coefficients are discussed. When the target is located in the side-looking direction of the airborne radar, the normalized spatial frequency of the target is zero. Then the spatial transmit and spatial receive matching coefficients between the target and the clutter point source in the center of the space-time plane both approach to one. Meanwhile, the normalized Doppler frequency of the side-looking target is in direct proportion to the target speed. When the target speed decreases to zero, the temporal Doppler matching coefficient between the target and the central clutter source is near to one. Thus taking the spatial and temporal matching coefficients into consideration, the SCNR loss of the traditional MIMO-STAP is approximate to zero. It indicates that for traditional MIMO-STAP, its performance of detecting low-speed target is severely degraded by the clutter source, and target detection can hardly be realized just in space-time domains. However, through utilizing the additional polarization information to take advantage of the polarization matching coefficient, the polarization array MIMO radar PSTAP increases the SCNR loss and remarkably lessens the influence of the central clutter source. According to the above theoretical analysis, we can come to the conclusion that the polarization array MIMO radar PSTAP can effectively promote the capability of clutter suppression compared with the traditional MIMO-STAP, which is beneficial to the detection of the moving target with low-speed. Moreover, the improvement of output SCNR performance becomes more significant with increasing the differences between the polarization parameters of target and those of clutter. Therefore, the polarization array MIMO radar PSTAP has great application value for practical engineering. The simulation results verify the validity and superiority of the proposed polarization array MIMO radar PSTAP method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference33 articles.

1. Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

2. Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

3. Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 物理学报 62 238402]

4. Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

5. Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3