Hybrid algorithm for composite electromagnetic scattering from the multi-target on and above rough sea surface

Author:

Li Bing ,Ma Meng-Chen ,Lei Ming-Zhu ,

Abstract

In the study of electromagnetic scattering of multi-target composite on and above the rough sea surface, the common algorithm such as the method of moment analyzes the relationship between the target and the rough sea surface point by point, so the common algorithm usually requires massive computation and a lot of time. In this paper, the rough sea surface is described by Pierson-Moscowitz (PM) spectrum and Monte Carlo method, and the composite electromagnetic scattering from multiple conductor flying targets above the rough sea surface is investigated by using the hybrid algorithm-the method of moment in the Kirchhoff approximation. The composite scattering region is divided into target region and rough sea surface region. The target region and the rough sea surface region are investigated by using the method of moment, and the Kirchhoff approximation, respectively. The formulas of the hybrid algorithm in different polarizations are derived in detail, and the scattering coefficients in different incident angles, target heights, target sizes, target distances and wind velocities are calculated in detail. The characteristics of the composite scattering coefficient from the multiple conductor flying target above the rough sea surface are also obtained. Results show that the hybrid algorithm, i. e., the combination of method of moment and the Kirchhoff approximation, can obtain higher accuracy, and reduce the computation time efficiently. The computation time used by the hybrid algorithm is 19% of that by using the method of moment. Moreover, the performance becomes more favorable with the increase of size of rough sea surface.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Zamani H, Tavakoli A, Dehmollaian M 2016IEEE Trans.Geosci.Remote Sens. 54 3685

2. Wei Y W, Guo L X 2016Waves Random Complex Media 26 152

3. Xu R W, Guo L X, HE H J, Liu W 2016 IEEE Geoscience and Remote Sensing Letters 13314

4. Di Martino G, Iodice A, Riccio D, Ruello G 2015Oceans 2015-Genova Genova, Italy, May 18-21, 2015, p4

5. Xie T, Perrie W, Shang Z Z, Fang H, Yu W J, He Y J 2016Chin.Phys.B 25 074102

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3