Study on deformation evolution and diffusion characteristics of PMMA under impact loading

Author:

Miao Chun-he ,Yuan Liangzhu ,Lu Jianhua ,WANG Pengfei ,XU Songlin , ,

Abstract

Dynamic compression experiments were carried out on cubic PMMA specimens and two kinds of trapezoid PMMA specimens by changing the transmission bars to steel and aluminum bar with the Loading device of split Hopkinson pressure bar (SHPB). The compression process of PMMA specimens was recorded by high-speed photography, and the breakage process of PMMA specimens was analyzed based on the force displacement curves and high-speed images. The evolution of deformation and diffusion resistance of PMMA specimens under impact loading was discussed. The results show that the failure of the sample is mainly caused by the partial failure front at the contact end, and then the failure front propagates to the inside of the sample and leads to the breakage of the sample. The failure front of cubic samples is preferentially generated at the transmission end under low speed impact and generated at the incident end under the higher speed impact. After changing the shape of the specimen and material of the transmission bar, the relaxation phenomenon is obvious, and the failure front only occurs at the incident end. The compressive deformation of the trapezoid sample before breakage is non-uniform, and the stress and strain in the sample gradually decrease with the increase of the cross section, and show a linear diffusion distribution. The strain distribution and shear activation diffusion equation were used to obtain the generalized diffusion resistance distribution of the failure front. The generalized diffusion resistance increases first in front of the failure front and decreases after the failure front and the amplitude of the generalized diffusion resistance is related to the release of local strain energy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3