Effect of inelastic scattering process of gluons on dilepton productions of quark-gluon plasma

Author:

Guan Na-Na ,

Abstract

Dileptons have large mean free paths due to their small cross sections for electromagnetic interaction in plasma. Therefore they are considered to be an important probe for the formation and evolution of the quark matter. In this work, we calculate the dilepton production of quark-gluon plasma (QGP) produced in Au197+ Au197 central collisions at relativistic heavy ion collider (RHIC) energy based on the evolution model of a chemically equilibrating viscous QGP. The evolution of the QGP system is described by a set of coupled relaxation equations containing the master equations of partons, the equation of baryon number conservation and equation of energy-momentum conservation. Solving the set of evolution equations, one can obtain the evolution of temperature T, quark chemical potential q, fugacities q for quarks and g for gluons. To discuss the shear viscosity of QGP, the contributions of the elastic scattering of quarks qqqqand gluons gggg, as well as the inelastic scattering process of gluons ggggg are included. Based on the evolution model including the viscosity, we perform a complete calculation of the dilepton production, including the processes of quark-antiquark annihilation qqll, next-order annihilation qqgll, Compton-like scattering qg qll, qg qll, multiple scattering of quarks, as well as gluon fusion gg cc, annihilation qqcc. It is found that the spectra from the quark-antiquark annihilations qqll and qqgll are dominated. The contributions from multiple scattering cannot be neglected. We also find that the dilepton yields remarkably decrease with considering an additional gluon inelastic process in the calculation compared with the results with considering only elastic scatterings of quarks and gluons. This indicates that the evolution of QGP system is accelerated and the evolution time is shortened by the inelastic scatterings of gluons.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference15 articles.

1. The STAR Collaboration 2014 Phys. Rev. Lett. 113 022301

2. The PHENIX Collaboration 2016 Phys. Rev. C 93 014904

3. Rapp R 2013 Nato Asi. 549 353

4. Rapp R 2013 Adv. High Energy Phys. 2013 148253

5. Ghisoiu I, Laine M 2014 JHEP 1410 83

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3