Physical hardware trojan failure analysis and detection method

Author:

Luo Yang ,Wang Ya-Nan ,

Abstract

The semiconductor industry is rapidly developing in the global market, and chip design companies usually purchase the third-party EDA tools in order to shorten the design cycle of IC and reduce manufacturing cost. Therefore, in the IC chip production procedure there exist a lot of insecurity factors, and the hardware security of IC chips becomes the most important issue of the national security defense. Physical hardware trojan will modify the value of register, leak sensitive data and cause device degradation failure. Furthermore, the physical hardware trojans only modify the physical properties of the circuit chip rather than injects the malicious functional circuit. They are hidden more deeply than logical hardware trojans. Therefore, it is far-reaching significance issues for the hardware trojan detection methods and national security to study logic circuit transmission characteristics and the chip degradation failure physical mechanism which are caused by injection physical hardware trojans. In this paper, a metal-oxide-semiconductor field-effect transistor (MOSFET) device with injection dopant hardware trojan is realized by using ATHENA process simulation system to achieve the ion implantation process. The ATLAS simulation devices are tested using hot carrier injection degradation (hot carrier degradation is denoted by HCD) stress model for the degradation failure process which is caused by injecting the hot carrier injection hardware trojan (HCHT) into the MOSFET device. Another normal MOSFET combines with dopant hardware trojan MOSFET or hot carrier injection hardware trojan MOSFET to comprise the same inverter logic circuit by using the ATLAS two-dimensional (2D) device simulation system with SmartSpice instructions mode. The effect on logic circuit output characteristics caused by physical hardware trojan is studied by using Spice simulation to output the DC and AC transient time characteristics. It is also studied how the W/L value of a hardware trojan transistor influences the output characteristics of the logic circuit. We design an experiment to study transient characteristics of the same inverter logic module which consists of different W/L values of a transistor at different temperatures. The experiment is realized by Spice circuit simulation. In this paper, the effects of the variations of the HCD stress intensity and temperature on output characteristic are analyzed for hot carrier injection hardware trojan. The results indicate that the negative effect of hardware trojan on logic circuit DC current output characteristic is more obvious than AC transient time characteristic. Thus, we propose an effective method and a convenient procedure to detect the injection physical hardware trojan in packaged chips. Furthermore, the test process is a feasible operation method of detecting physical hardware trojan.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Tehranipoor M, Koushanfar F 2010 IEEE Design Test of Computers 27 10

2. Alkabani Y, Koushanfar F 2009 Proceedings of Computer-Aided Design-Digest of Technical Papers San Jose, CA Nov. 2-5, 2009 p123

3. Banga M, Hsiao M S 2009 Proceedings of Hardware Oriented Security and Trust Francisco, CA July 27-27, 2009 p104

4. Koushanfar F, Mirhoseini A 2011 IEEE Trans. Inform. Forensics and Security 6 162

5. Koushanfar F, Mirhoseini A, Alkabani Y 2010 Proceedings of the Information Hiding Calgary, AB June 28-30, 2010 p17

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3