Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering

Author:

Wang Dang-Hui ,Xu Tian-Han ,Song Hai-Yang ,

Abstract

III-nitride materials have attracted considerable attention in the last decade due to their wide applications in solidstate light devices with their direct wide band-gaps and higher quantum efficiencies. InGaN/GaN multiple quantum well is important active region for light-emitting diode, which can be tuned according to indium composition in the InxGa1-xN alloy system. Owing to difficulty in fabricating bulk materials, GaN thin films are heteroepitaxially grown on latticemismatched and thermal-expansion-mismatched substrates, such as sapphire (Al2O3), Si and SiC, which subsequently results in a mass of threading dislocations and higher residual strains. On the one hand, dislocations and defects existing in GaN epifilms trap the carriers as scattering centers in the radiative recombination process between electrons and holes, and play an important role in drooping the internal quantum efficiency. On the other hand, higher built-in electric field induced by residual strains existing in GaN epifilm could make the emission wavelength red-shifted.It is common knowledge that temperature is one of the important factors in the growth process of epitaxial films, as a result, further research on thermal expansion behaviors is needed. Based on the above analysis, an in-depth study of thermal expansion behavior of wurtzite GaN epitaxial film is of vital importance both in theory and in application.In this study, we investigate the thermal expansion behaviors of wurtzite GaN epitaxial films by using temperaturedependent Raman scattering in a temperature range from 83 K to 503 K. According to the physical implication, Gruneisen parameter is almost a constant (Gruneisen parameters of all phonon modes are in a range between 1 to 2 for GaN) that characterizes the relationship between the phonon shift and the volume of a solid-state material. More importantly, Gruneisen parameter is relatively insensitive to temperature and suitable for building the connection between the phonon shift and thermal expansion coefficient. Therefore, the linear relationship between the phonon shift and temperature is built and utilized to calculate the thermal expansion coefficient according to the physical implication of the Gruneisen parameter. Conclusions can be obtained as follows. (1) The thermal expansion coefficient of GaN epifilm can be calculated in a certain temperature range by measuring the phonon modes of E2 (high), A1 (TO) and E1 (TO) through using temperature-dependent Raman scattering when the corresponding Gruneisen parameters are determined. (2) The calculated thermal expansion coefficients of GaN epifilm are consistent with the theoretical values.Conclusions and methods in this paper provide an effective quantitative analysis method to characterize the thermal expansion behaviors of other III-nitride epitaxial thin films, such as AlN, InN, AlGaN, InGaN, InAlN etc., which can be of benefit to reducing the dislocation density and improving the luminescence efficiency of light emitting diode. Therefore, research on thermal expansion behaviors of epifilms using temperature-dependent Raman scattering has a direction for further studying the latter-mismatch and thermal-expansion-mismatch between the epitaxial film and substrate.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3