Application of inductively coupled microplasma jet on rapid manufacturing

Author:

Zhang Yi-Chuan ,Yang Kuan ,Li Huan ,Zhu Xiao-Dong ,

Abstract

Metal rapid manufacture has received great attention in recent decades. Energy source with high power density is requisite for the metal deposition. Atmospheric pressure inductively coupled microplasma jet is commonly characterized by high temperatures, which is one of excellent candidates for metal rapid manufacture on a micro scale.In this paper, we investigate the microplasma jet driven by a 150 MHz very-high-frequency power supply at atmospheric pressure. A microplasma of 3 cm in length and about 3 mm in diameter can be produced at 90 W power applied, with gas temperatures above one thousand degree centigrade. The jet length rises first, and then decreases by increasing gas flow rate, showing a transition from laminar flow to turbulence. The jet length also increases by enhancing applied power, but then keeps a maximum value with further increasing power, which is attributed to the attainment of equilibrium between the energy absorption and losses in the transport process in plasma.Copper powders are carried by the argon flowing into plasma, and melted fast by the microjet. An alumina ceramic plate is used as a substrate, which is set on the substrate holder with a precisely controlled X-Y-Z manipulator. A copper spherical cap with 2 mm in diameter and a column with 1 cm in height are fabricated in a few seconds, respectively, on the alumina ceramic substrate. The Cu spherical cap is characterized by scanning electron microscopy. Particles obtained on the sample surface are far smaller than the source powders, indicating a melting process of copper powders in plasma, as well as high gas temperature exceeding the melting point of copper. The weak peak of Cu2+1O is present besides strong copper diffraction lines in X-ray diffraction pattern, suggesting that the weak oxidation happens during rapid fabrication.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3