Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna

Author:

Zhang Chen ,Cao Xiang-Yu ,Gao Jun ,Li Si-Jia ,Zheng Yue-Jun ,

Abstract

The demands for highly directive antennas are becoming more stringent, especially in microwave regions. Traditional ways to enhance the antenna gain such as reflectors, dielectric lenses, waveguide horns and microstrip antenna arrays suffer design complexity, high cost and power loss in the feeding network, so it is urgent to find a simple way to solve the problem. Fabry-Perot (F-P) antenna has a high directivity and low sidewall, owing to the resonance of the cavity in a cophasal and tapered field distribution along the lateral direction. However, the disadvantage of F-P antenna is obvious for the inherently narrow gain bandwidth which inhibits their many applications. In this paper, a broadband and high-gain shared-aperture F-P resonator magneto-electric (ME) microstrip antenna working at X band is designed and fabricated. In order to design a wideband metamaterial superstrate unit, the structure with two different frequency selective surface (FSS) layers is presented: the metal pattern at the top of the unit is a square patch and has a high reflection coefficient in the high frequency band, and at the bottom the metal pattern is a cross patch, it has a high reflection coefficient in the low frequency band, therefore, the whole unit should resonate in a broadband frequency range. Theoretical analysis and simulation result indicate that the unit has a linearly increasing phase response and a high reflection coefficient across a broadband range and it has the potential to construct a wideband F-P resonator antenna. In the proposed antenna, a novel wideband ME microstrip antenna is used as the feeding source. For the antenna covers the whole X band, the bandwidth of the F-P resonator superstrate should be further expanded. Simulated calculation results indicate that different sizes of two-layer FSSs have different reflection phases but the same coefficient, therefore a shared-aperture structure with three different sizes of FSSs is obtained. The arrangement utilizes the phase compensation property along different FSSs, and broadens the gain enhancement bandwidth effectively. When the superstrate is set to be approximately 15.5 mm above the ground plane of the ME antenna, the antenna possesses an impedance bandwidth of 44.7% for the reflection coefficient (S11) below -10 dB from 7.8 GHz to 12.3 GHz, covering the whole X band. From 7.9 GHz to 12.1 GHz, the antenna has an obvious gain enhancement, with a peak of 7 dB. Numerical and experimental results indicate that compared with the traditional F-P resonator structure, the shared-aperture metamaterial superstrate can effectively broaden the antenna gain enhancement bandwidth, and it has great application values for designing new broadband metamaterial superstrate high-gain antennas.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3