Simulation of translocating pore of DNA in non-uniform force by coarse-grained model

Author:

Ma Shan ,Ma Jun ,Yang Guang-Can ,

Abstract

Translocating pore of biomacromolecules is a common phenomenon in many biological processes, such as DNA transcription, cell infection of virus and transmembrane of proteins. The understanding of translocating pore of DNA is important for studying the DNA sequencing, gene therapy and virus infection. According to the coarse-grained model, we use molecular dynamics simulations to investigate the process of translocating pore of DNA under the actions of different non-uniform forces. In the present study, we consider five kinds of non-uniform forces, i.e., linearly increasing, linearly decreasing, V-type, inverted V-shaped, and periodic type. In the simulations of coarse-grained DNA, we find that the force on the pore opening palys a key role in the process of translocation of polymer. When the force is small, the probability of successful translocation of DNA is low accordingly. In the case of inverted V-shaped potential, the difference between the maximum and minimum force should be in a limited range to a probable translocation of DNA. Out of the range it might lead to clogged pores in the polymer chain. In the action of a non-uniform force, the translocating pore of DNA shows a series of complicated behaviors. For example, the end of a polymer can move faster than its head, resulting in the hole clogging and accumulation of polymers. A reversion can occasionally occur after a successful translocation of polymer. Therefore, non-uniform force leads to various scenarios of translocating pore of polymers.In summary, due to the complicated interactions between external forces and internal potential of polymer chains, particles can be clogged in the pore since the following particles overtake the leading ones in the chain. It is also found that the success of pore translation of DNA is significantly dependent on the acting force on the pore. Among all the cases of translating the pore successfully, the translation time in the case of non-uniform force is about half that in the case of uniform force. These results might provide an insight into the understanding of the complicated pore translating mechanism of DNA.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3