Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100)

Author:

Zhang Yu-He ,Niu Dong-Mei ,Lü Lu ,Xie Hai-Peng ,Zhu Meng-Long ,Zhang Hong ,Liu Peng ,Cao Ning-Tong ,Gao Yong-Li , ,

Abstract

Using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), and grazing X-ray diffraction measurement(GIXRD), we systematically investigate the correlations of interface energy level structure, film growth and the molecular orientation of 2, 7-dioctyl[1]benzothieno-[3, 2-b][1]benzothiophene (C8-BTBT) on Cu(100). We find that the adsorption of the first layer of C8-BTBT molecules on Cu(100) is a stable physical one, and there is no chemical shift of the S 2p peaks of XPS and the ratio of the output of C to that of S is the same as the stoichiometric value of the molecular C8-BTBT. The heights of the steps of the upper layers of C8-BTBT in the AFM images are ~ 30 , close to the length of the molecular long c-axis, indicating the standing-up configuration of the upper molecules. AFM image shows that the upper molecules tend to grow into islands while the bottom molecules tend to grow into layer, suggesting an Stranski-Krastanov growth mode of multilayer C8-BTBT on Cu(100). The GIXRD shows an out-of-plane period of 30.21 , which consistently proves the standing-up configuration of the outer molecule layer. There is an electric dipole of 0.41 eV at the very interface pointing from the substrate copper to C8-BTBT, which will reduce the barrier for electron transport and increase the barrier for hole transport from Cu to C8-BTBT. The vacuum level (Evac) starts to bend downward after 16 deposition, and with the increase of the thickness of the film, a total downward shift of 0.42 eV is observed. The downward shift is ascribed to the changing of molecular orientation from lying down before 16 to standing up after 16 , which establishes an outward-pointing layer of C-H bonds and accordingly forms a dipole layer depressing the surface barrier. The shape and leading edge of the hightest occupied molecular orbit (HOMO) also change with the increase of film thickness. These changes are due to the anisotropy of electron ionization from molecular orbit. The total downward shift of the HOMO is about 0.63 eV. The downward bending of 0.42 eV for Evac and 0.63 eV for HOMO with increasing film thickness lead to a slightly decreasing ionization potential (IP) about 0.1 eV before 32 and then an increasing IP about 0.31 eV, which finally results in a total increase of 0.21 eV for IP. The bending electronic structures facilitate electron transport from interface to surface and hole transport from surface to interface. Our Investigation provides valuable information for relevant device design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3