Effects of vacancy point defects and phase transitions on optical properties of shocked Al2O3

Author:

Tang Shi-Hui ,Cao Xiu-Xia ,He Lin ,Zhu Wen-Jun , ,

Abstract

The velocity interferometer system for any reflector (VISAR) and pyrometric measurements in dynamic highpressure experiments require the use of an optical window, and Alumina (Al2O3) or sapphires is often considered as a window material due to its high shock impedance and excellent transparency. Consequently, understanding the characteristics of its transparency and refractive index change under shock loading is crucial for explaining such experimental data. Experimental studies indicate optical transparency loss in shocked Al2O3. The mechanisms for the phenomenon are some interesting issues. A first-principles study suggests that shock-induced VO+2 (the +2 charged O vacancy) defects in Al2O3 could be an important factor causing the transparency loss. Recently, the red shift of the extinction curve (i.e., the wavelength dependence of the extinction coefficient) with increasing shock pressure has been observed. It is needed to ascertain whether this behavior is also related to shock-induced vacancy point defects. In addition, up to now, information about Al2O3 refractive index at a wavelength of 532 nm under strong shock compression (the optical source wavelength in VISAR measurement is usually set at 532 nm) has been unknown, and neither the effects of structural transitions nor vacancy point defects on the refractive index of shocked Al2O3 are determined. Here, to investigate the above-mentioned questions, we perform first principles calculations of optical absorption and refractive index properties of Al2O3 crystal without and with VO+2 and VAl3 (the -3 charged Al vacancy) defects in a pressure range of 180 GPa (the calculations in CASTEP are carried out by the plane-wave pseudo potential method in the framework of the density functional theory). Our absorption data show that the observed optical extinction in shocked Al2O3 cannot be explained by only considering pressure and temperature factors, but shock-induced VO+2 should be an important source for this behavior. On the basis of these results, we may judge that 1) the transparency loss explanation for shocked Al2O3 in the view of vacancy point defects is reasonable; 2) the absorption extinction should dominate the extinction phenomenon observed in shocked Al2O3. Our calculations find that high-pressure structural transition in Al2O3 causes an obvious enhancement of its refractive index. The refractive index decreases with increasing shock pressure in corundum and Rh2O3 regions, and decreases slightly below 172 GPa and increases slowly above 172 GPa with increasing shock pressure in CalrO3 region. The VO+2 and VAl3 defects in Al2O3 have apparent influences on the shock pressure dependence of its refractive index. These results mean that the information about Al2O3 refractive index under strong shock loading cannot be obtained simply by extrapolating its low pressure data. Our prediction could be of importance for future experimental study and new window-material development.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828

2. Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326

3. Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 物理学报 56 4965]

4. Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389

5. Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3