Temporal distortion analysis of the streak tube

Author:

Hui Dan-Dan ,Tian Jin-Shou ,Lu Yu ,Wang Jun-Feng ,Wen Wen-Long ,Liang Ling-Liang ,Chen Lin , , ,

Abstract

Streak cameras applied to inertial confinement fusion research and flashless imaging lidar require large working areas. However, the larger the working area, the bigger the temporal distortion is. And the temporal distortion has a great influence on the detecting precision of the streak camera, resulting in an image distortion on the screen. Yet previous streak camera design work emphasized shorter time resolution and higher special resolution with paying less attention to the temporal distortion extent. Key factors that may affect the temporal distortion are thoroughly analyzed in this paper. We calculate the electric field of a small-size streak tube with the aid of the Computer Simulation Technology Particle Studio software which is a three-dimensional electromagnetic simulation software based on finite integration technology. Axial electric field distributions at different distances to the axis of the small-size streak tube are displayed. The electron trajectories launched from different points on photocathode of the streak tube are tracked through interpolating pre-calculated electromagnetic field to the particle position. It is known that curved photocathode can reduce the temporal distortion, so we calculate the temporal distortions of streak tubes whose radii of curvature of the photocathode are 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, and 55 mm respectively to ascertain how the curvature influences the temporal distortion. The results show that the temporal distortion is mainly produced in the photocathode-to-deflector region, and it is negligible in the equipotential region. Also, bigger radius of curvature of the photocathode leads to a positive temporal distortion, and smaller one leads to a negative temporal distortion. And the absolute value of the temporal distortion increases with the increase of the slit length. The small-size streak tube whose radius of curvature of the photocathode is 40 mm owns the smallest temporal distortion. We also calculate the temporal distortions of electrons launched from the different positions of the photocathode with different initial energies, and the initial energy has little influence on the temporal distortion. To sum up, the dominating factor that produces the temporal distortion is the curvature of the photocathode. The slit image under a ramp sweeping voltage on screen is curved due to the temporal distortion. And the bigger the temporal distortion, the greater the curvature of the slit image is. Besides, a linear relation between the temporal distortion and deflection of the slit image is displayed. The spatial resolutions of the streak tubes with the radii of curvature of the photocathode 30 mm, 40 mm, 50 mm are calculated respectively. And the small-size streak tube whose radius of curvature of the photocathode is 30 mm has the highest spatial resolution. The radius of curvature of the streak tube photocathode should be carefully selected according to actual requirements for the streak camera. Through the analysis we provide a significant guidance for streak tube design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference18 articles.

1. Takahashi A, Nishizawa M, Inagaki Y, Koishi M, Kinoshita K 1994 Proceedings of SPIE on Generation, Amplification, and Measurement of Ultrashort Laser Pulses Los Angeles, CA, January 23, 1994 p275

2. Losovoi V, Ushkov I, Prokhorenko E, Schelev M, Smirnov A 2003 Proceedings of SPIE of 25th International Congress on High-Speed Photography and Photonics Beaune, Finland, September 29, 2002 p297

3. Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502]

4. Hinrichs C K 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1984 p36

5. Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3