Optimization of the performance of quantum thermoacoustic micro-cycle

Author:

Shu An-Qing ,Wu Feng , ,

Abstract

The purpose of this paper is to optimize the performance of a quantum thermoacoustic micro-cycle. Thermoacoustic devices, such as thermoacoustic engines, thermoacoustic refrigerators, and thermoacoustic heat pumps are a new class of mechanical equipments without moving part and pollution. The thermoacoustic technology associated with these devices will hasten significant revolution in power engineering and mechanical devices. The work substance of a thermoacoustic device is composed of a number of parcels of fluid. Each parcel consists of a lot of molecules or atoms. The thermodynamic cycle is realized by the heat exchange between the parcel and the solid wall of the channel. The thermodynamic cycle of the parcel of fluid is called the thermoacoustic micro-cycle. The thermodynamic behavior of a thermoacoustic system may be described by studying that of the thermoacoustic micro-cycle. It is necessary to study the model and performance of the thermoacoustic micro-cycle in order to promote the development of thermoacoustic technology. The quantum mechanics, which was one of the great achievements in the 20 th century, can reveal the secret of the micro particle world. Quantum thermodynamics is an inter-discipline that combines quantum dynamics and thermodynamics. It provides a useful tool for analyzing the quantum cycles and devices. In this paper, the method of the quantum thermodynamics is employed to analyze the performance of a quantum thermoacoustic micro-cycle. The thermoacoustic parcel is modeled as a gas composed of many micro particles, which abide by the quantum mechanics. These particles are referred to as thermal phonons. Thermal phonons are bosons. The evolution of each thermal phonon must satisfy the Schrö dinger equation in quantum mechanics. The quantum mechanics model of the thermoacoustic micro-cycle, which is called the quantum thermoacoustic micro-cycle, is established in this paper. The quantum thermoacoustic micro-cycle consists of two constant force processes and two quantum adiabatic processes. The quantum thermodynamical behavior and evolution of the thermal phonon in a one-dimensional harmonic trap are investigated based on the Schrö dinger equation and the two-eigenstates system. The energy eigenvalue of the thermal phonon are employed. The analytical expressions of the optimal dimensionless power output P*, the thermal efficiency η and the critical temperature gradient (dT/dx)ex for the quantum thermoacoustic micro-cycle are derived by considering Gibbs probability distribution. The optimal relationship between dimensionless power output P* and thermal efficiency η is obtained. The analysis shows that both the power output and the thermal efficiency decrease with the increase of width of the harmonic trap L1. One can find that the characteristic curve of P*-η is parabolic-shaped. There exist a maximum dimensionless power output P* and the corresponding frequency η. It is noteworthy that there is a critical temperature gradient for the quantum thermoacoustic micro-cycle. The critical temperature gradient is important because it is the boundary between the heat engine and the heat pump. The optimal design and these operating conditions for the quantum thermoacoustic micro-cycle are determined in this paper. The results provide a new method for studying the thermoacoustics by means of the quantum thermodynamics, thereby broadening the application range of the quantum thermodynamic.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3