Robust Capon beamforming with weighted sparse constraint

Author:

Liu Zhen ,Sun Chao ,Liu Xiong-Hou ,Guo Qi-Li , ,

Abstract

Adaptive beamforming is widely used in the fields such as radar, sonar, wireless communication to estimate the parameters of the signal of interest (SOI) at the output of a sensor array by data-adaptive spatial filtering and interference suppression. The standard Capon beamformer (SCB) is a typical adaptive beamforming approach which provides a superior performance by minimizing the array output power while simultaneously maintaining the array response under the assumption of distortionless direction of arrival (DOA). However, the advantages in performance of SCB are obtainable only when the number of snapshots available for the sample covariance matrix estimation is large enough and the direction of the SOI is known accurately. When applied to practical situations where the aforementioned two requirements are not satisfied, SCB will suffer high sidelobe levels and performance degradation in the parameter estimates due to lack of measurements and mismatch in the steering vector.A sparsity-constrained Capon beamformer (SCCB) arises to alleviate these problems. Unlike SCB, the constraint in SCCB is composed of two parts: the original array output power constraint part and the sparse constraint part (?1 norm constraint, encouraging sparse distribution in the array responses). However, if the sparse constraint in SCCB is set too large compared with the array output power constraint part, the responses in the directions of interferences will be influenced, and a tradeoff between the ability to reduce the sidelobe levels and the ability to reject the interferences must be made. Thus, based on the SCCB, a new robust Capon beamformer utilizing a weighted sparse constraint is proposed in this paper. In the proposed method, the sparse constraint part is replaced by a weighted sparse constraint, which is applied only to the sidelobe regions of the beampattern. By doing so, the number of the non-zero elements in the sidelobe response is minimized, resulting in an enhanced mainlobe region and suppressed sidelobe ones.In sparse recovery, the sparse constraint (the l1 norm constraint) does not necessarily enforce democratic penalization, which means that larger coefficients are penalized more heavily than smaller coefficients. Based on such a consideration, a weighting matrix can be constructed to put larger weights in the interferences directions to discourage their responses, and put smaller weights to maintain the responses in the remaining parts of the sidelobe regions. In this paper, the weighting matrix is obtained by utilizing the orthogonality between the signal subspace and the noise subspace. Since the steering vectors corresponding to the interferences and the SOI span the same space as the signal subspace, the inner products between the steering vectors in the interference directions and the noise subspace will produce zeroes ideally. By taking the reciprocals of these inner products, large values will yield in the interference directions while small values are obtained in other directions in the sidelobe regions. Using these values as the weights to the sparse constraint, a beampattern with deeper nulls, lower sidelobes, and better robustness to steering vector mismatch is obtainable as compared with SCB and SCCB. Besides, the output SINR is also effectively improved. Numerical simulations and a water-tank experiment are conducted to demonstrate the effectiveness of the proposed method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Haykin S 1985 Array Signal Processing (New Jersey: Prentice-Hall) pp15-77

2. Harry L, Van T 2002 Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing (New York: Wiley) pp728-751

3. Capon J 1969 Proc. IEEE 57 1408

4. Liu J, Gershman A B, Luo Z Q, Kon M W 2003 IEEE Sign. Process. Lett. 10 331

5. Cox H 1973 J. Acoust. Soc. Am 54 771

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3