Influence of surface microstructure on explosive electron emission properties of graphite cathode doped by silicon carbide whiskers

Author:

Hua Ye ,Wan Hong ,Chen Xing-Yu ,Wu Ping ,Bai Shu-Xin , ,

Abstract

Explosive emission cathode (EEC) is a pivotal component in high power microwave source (HPMS), of which the ultimate properties are significantly dependent on the quality of electron beams generated from the cathode. Short lifetime and poor emission uniformity are the persistent drawbacks of conventional field EEC. Improvement of cathode material by changing its compositions and modifying surface micromorphology, is a feasible way to solve this problem. Graphite is one of the frequently used materials for EECs due to its long life-time and sturdy performance under high voltage and repetition frequency. Meanwhile silicon carbide (SiC) whiskers are distinguished by high aspect ratio (ratio of height to diameter) and low work function which is in favor of the fast onset of electron emission. In this work, the novel composites, composed of SiC whiskers, pitch and major graphite powders, are prepared by the conventional mingling and sintering. The cathodes are installed on TPG1000 system with a parameterized pulse of 970 kV, 9.2 kA, and 50 ns. By analyzing the changes of the rise edge of measured diode current and output microwave pulse duration, the effects of material composition and surface micromorphology on electron emission properties for the cathode are disclosed in detail. The results, based on the comparison of emission properties between graphite cathodes with and without SiC whiskers doped, reveal that SiC whiskers play an important role in accelerating the field emission of cathode, which is demonstrated by the eclipse of displacement current peak on the rise edge of measured current waveform after doping. Meanwhile, the duration of output microwave pulse is enhanced by about 11% after doping, which could be explained by the lower expansion speed of Si plasma. Moreover, the surface micro-protrusions of graphite cathode doped by SiC whiskers are constantly “polished” by heating effect and cathode plasma as the number of emission pulses increases to 11000. This is in quite good agreement with the appearance of the displacement current peak on the rise edge of measured current curves after 6000 and 11000 pulses treatment. These changes imply that the initial speed of field emission from cathode is slowed down gradually. The output microwave pulse starts early, which is benefited from the homogeneous surface micromorphology of the cathode due to “polishing” effect. The quantity of releasing absorbed gases, including water and vacuum pump oil vapor, decreases with increasing emission pulses. Then the pulse shortening phenomenon is restrained and the falling edge of output microwave pulse is extended. The duration of output microwave pulse is increased by about 5%, for graphite cathode doped by SiC whiskers after experiencing 11000 pulses. In conclusion, the reaction mechanism of SiC whiskers in the process of explosive electron emission (EEE) is considered as being due to accelerating the onset of felid emission and reducing the expansion speed of cathode plasma. Therefore, combination with SiC whiskers is an effective way to improve the electron emission properties of graphite EECs, especially in the output microwave pulse width and energy conversion efficiency of HPMS.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Benford J, Swegl J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwaves (2nd Ed.) (Beijing: National Defense Industry Press) p35 (in Chinese) [本福德J, 斯威格J A, 谢米洛格鲁E 著(江伟华,张驰 译) 2009 高功率微波 (第二版) (北京:国防工业出版社) 第35页]

2. Sun J 2006 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [孙钧 2006 博士学位论文(北京: 清华大学)]

3. Zhang Y H, Song F L, Xiang F, Kang Q, Luo M, Gong S G 2008 High Power Laser Particle Beams 20 863 (in Chinese) [张永辉, 宋法伦, 向飞,康强,罗敏,龚胜刚 2008 强激光与粒子束 20 863]

4. Jin Z X, Zhang J, Lei Y, Qian B L, Fan Y W, Zhou S Y 2011 High Power Laser Particle Beams 23 1307 (in Chinese) [靳振兴, 张军, 雷应,钱宝良,樊玉伟,周生岳 2011 强激光与粒子束 23 1307]

5. Krasik Y E, Dunaevsky A, Gleizer J Z, Felsteiner J, Kotov Y A, Sokovnin S Y, Balezin M E 2002 J. Appl. Phys. 91 9385

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3