Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix

Author:

Jiao Bao-Bao ,

Abstract

Using shell model to calculate the nuclear systems in a large model space is an important method in the field of nuclear physics.On the basis of the nuclear shell model,a large symmetric non-orthonormal sparse Hamiltonian matrix is generated when adopting the generalized seniority method to truncate the many-body space.Calculating the energy eigenvalues and energy eigenvectors of the large symmetric non-orthonormal sparse Hamiltonian matrix is of indispensable steps before energies of nucleus are further calculated.In the mean time,some low-lying energy eigenvalues are always the focus of attention on the occasion of large scale shell model calculation.In this paper,by combining reorthogonalization Lanczos method with Cholesky decomposition method and Elementary transformation method,converting the generalized eigenvalue problems into the standard eigenvalue problems,and transforming the large standard eigenvalue problems into the small standard eigenvalue problems,we successfully calculate the eigenvalues and eigenvectors of large non-orthonormal sparse matrices with the help of computers with limited memory.The values obtained by using this method to calculate the small matrix agree with the exact values,which demonstrates that this method is accurate and can be used to calculate the energy eigenvalues and energy eigenvectors of large symmetric nonorthonormal sparse matrix.We take 116Sn (s=8,the number of unpaired particles,namely the generalized seniority) as an example in which there are active valence neutrons but inert protons at the magic number,and calculate ten of its lowest energy eigenvalues.Through calculation,we find that among these low-lying energy eigenvalues,the lowest energy eigenvalue converges fastest.A comparison between the calculation values and the experiment values shows that the difference between the calculated high-lying energy eigenvalue and its corresponding experimental one arrives at hundreds of keV,while for the low-lying energy eigenvalue,its calculation value can reach an accuracy of a few tens of keV.The results demonstrate that the Lanczos method is feasible in Matlab programming and shell model calculations. The significance of this research lies in the fact that this method will not only greatly help to calculate and obtain the low-lying energy eigenvalues of some medium-mass and heavy nuclei,but also possess great importance in calculating partial eigenvalues involved in large matrices in other theoretical researches and engineering designs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3