Design and performance analysis of THz microcavity-enhanced graphene photodetector

Author:

Liang Zhen-Jiang ,Liu Hai-Xia ,Niu Yan-Xiong ,Liu Kai-Ming ,Yin Yi-Heng ,

Abstract

Detection of the terahertz (THz) electromagnetic spectrum(wavelengths range 0.03-3 mm) is a promising technique for a large variety of strategic applications, such as biomedical diagnostics and process, quality control, homeland security, and environmental monitoring, etc. Graphene has been recognized internationally to have dominant advantages in photodetectors operating due to its high carrier mobility, gapless spectrum, and frequency-independent absorption coefficient. Graphene photodetector operating in the THz region has been extensively studied with great interests. A graphene microcavity photodetector with THz electromagnetic spectrum is demonstrated in this paper, and its responsivity and detectivity under THz electromagnetic spectrum are evaluated. In the designed device, we adopt a distributed bragger reflection (DBR) consisting of two semiconductor materials SiO2 and TiO2 to form an alternating cavity with high-finesse planar, sandwich the absorbing graphene layer between the cavitys top and bottom layers, and design the DBRs reflectivity by the optical transmission matrix method. The monolayer graphenes optical absorption mechanism of the THz radiation spectrum is studied by the conductivity matrix and Maxwells equations with the electromagnetic boundary conditions. Graphenes transfer matrix and absorption coefficient equation are further derived. It is found that at THz region, graphenes conductivity plays an important role in its absorptionand its absorption is 9-22 times enhanced compared with that at the visible region. An optical absorption model of microcavity-enhanced graphene photodetector at THz region is established. The photodetectors absorption rate and responsitivity are analyzed specifically. Theoretical analysis shows that absorption rate is symmetrical to the microcavitys center position and changes periodically, and the shift of the microcavity length influences the period numbers. The maximum rate of the photodetectors absorption reaches 0.965 at 0.12 THz, which increases 93% compared with its maximum absorption rate 0.5 with no cavity. The optimal structure parameters for the designed photodetector are as follows, the top and bottom mirrors reflectivity are 0.928 and 0.998 respectively, the microcavity length is 2.5 mm, the graphene is 0.035 mm away from the top mirror. Under the optimal structure, the photodetectors responsivity reaches 236.7 A/W, and its full width at half maximum reaches 0.035 THz. The designed graphene microcavity photodetector can exhibit high responsivity and detectivity in THz radiation spectrum.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

2. Liu S G, Zhong R B 2009 Journal of University of Electronic Science and Technology of China 38 481

3. Zhang Z L, Mu K J, Zhang C L 2009 Science and Technology 8 11

4. Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, Lue J T, Luo H, Laframboise S R, Liu H C 2008 J. Appl. Phys. 104 043101

5. Williams B S 2007 Nat. Photonics 1 517

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3