Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites

Author:

Li Li-Li ,Zhang Xiao-Hong ,Wang Yu-Long ,Guo Jia-Hui ,Zhang Shuang , ,

Abstract

In order to explore the microscopic mechanism of mechanical properties in polyethylene/montmorillonite (PE/MMT) nanocomposite material,the molecular model and the molecule structure are simulated by simulation software,and the mechanisms of various complex phenomena of mechanical properties in PE/MMT nanocomposite material can be understood more in depth in the paper.To achieve this,the molecular model is developed under 423 K based on the molecular dynamics method and using the modules of Amorphous Cell as well,Forcite Tools and Reflex in the simulation software material studio includes polyethylene model,montmorillonite models without organization,organic montmorillonite model,and PE/MMT nanocomposites model.Then,microstructure and mechanical properties of PE/MMT nanocomposite material are analyzed by X-ray diffraction,radial distribution function and interaction energy test under universal force field,respectively.Some important findings emerge from the simulation results.First,after the molecular dynamic process of canonical ensemble (NVT) and constant-pressure,constant-temperature ensemble (NPT),the fluctuations in temperature and energy of polyethylene,montmorillonite without organization,organic montmorillonite,and PE/MMT nanocomposite material are all less than 5%.This implies that the low energy state is occupied and steady structures are formed in PE/MMT nanocomposite material.Second,the inter-layer spacing of organic montmorillonite is expanded to 20 due to cations of 18 alkyl three methyl ammonium chloride,which is increased by 79% compared with that of montmorillonite without organization.Meantime,the expansibility of PE/MMT nanocomposite material is obvious,and the density and volume of PE/MMT nanocomposite material are improved by -32% and 393% respectively,compared with those of organic montmorillonite.Third,when the mass fraction of organic montmorillonite reaches 4.0 wt%,the hydrogen bonding interaction obviously exists in PE/MMT nanocomposite material,and the interaction energy between polyethylene and montmorillonite layers has a maximum value of up to -390 kcal/mol,which leads to the stable structure of PE/MMT nanocomposite material and the significant improvement of the interfacial bonding between montmorillonite and polyethylene.Fourth,mechanical properties are significantly improved compared with that of polyethylene under elastic deformation,which is 4.0 wt% organic montmorillonite in PE/MMT nanocomposite material.Young's modulus,bulk modulus and shear modulus are increased by 38%,21% and 40%,respectively.Finally,the simulation results are compared with actual observed ones.The consistency between simulation results and actually observed ones can prove that the method of modeling PE/MMT nanocomposite material is correct and effective.Furthermore,when polyethylene chains enter into the layers of organic montmorillonite,it is verified that the PE/MMT nanocomposites can be formed and that the reason for the improvement of mechanical properties in PE/MMT nanocomposite material is the emergence of hydrogen bond.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539

2. Zhang L D, Mu J M 2001 Nano Materials and Nano Structures (1st Ed.) (Beijing: Science Press) pp51-65(in Chinese) [张立德, 牟季美2001纳米材料和纳米结构第 1版(北京:科学出版社)第51–65页]

3. Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539

4. Lei Q Q, Fan Y, Wang X 2000 J. Inorg. Mater. 15 1107 (in Chinese) [高镰, 李炜群, 王宏志2000无机材料学报15 1107]

5. Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬2013物理学报62 036801]

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3