Experimental research on generating and splitting degenerate correlated photon pairs in Sagnac fiber loop

Author:

Yang Lei ,Liu Nan-Nan ,Li Xiao-Ying ,

Abstract

Degenerate correlated photon pairs (DCPPs) have been widely used in quantum information science,especially in the areas of quantum computation,quantum state control and precision measurement,which are typically generated in a (2) nonlinear crystal through the spontaneous parametric down-conversion.However,such a source is not compatible with optical fiber as large coupling losses occur when the pairs are launched into it,which restricts its direct application to quantum information processing system.More recently,DCPP generation from spontaneous four-wave mixing in (3) optical fiber has aroused strong interest,due to its advantages of compatibility with existing fiber networks and free of alignment.The process of generating DCPP in fiber can be described as follows:two pump photons at different frequencies p1 and p2 scatter through the (3) nonlinearity to create a pair of identical photons at the mean frequency c,such that p1+p2=2c.Because the collinear tensor component xxxx(3) in a Kerr nonlinear medium is 3 times as large as the tensor component xyxy(3),the co-polarized four-wave mixing is preferred,which means the two pump photons and new-born twin photons are both co-polarized.Therefore,it is very challenging to deterministically separate the fiber-based DCPP,since the twin photons share the same properties in all degrees of freedom:frequency,polarization and spatial.Sagnac fiber loop (SFL),composed of a piece of nonlinear fiber and 50/50 coupler,is presented as the splitter for DCPP based on the reversed Hong-Ou-Mandel quantum interference of counter-propagating DCPPs.The SFL can be configured as a total reflector,total transmitter or equally transmissive and reflective state,which sets the differential phases of counter-propagating DCPPs meeting at 50/50 coupler to be ,0 and -,respectively.In order to satisfy the differential phase requirement for completely splitting the DCPP,the SFL is always set to be equally transmissive and reflective state,however,the polarization-mode matching of counter-propagating DCPPs is not easily achieved due to the disturbance of fiber birefringence.According to the Jones matrix derivation of DCPP propagating in the SFL,the polarization mode of counter-propagating DCPPs when interference at 50/50 coupler is automatically matched,if the SFL is set as a total reflector or total transmitter.In experimental scheme,utilizing the SFL as a total reflector,the 1.1 nm bandwidth and 1544.53 nm central wavelength DCPPs are generated by two pulsed light beams pumping the 300 m dispersion-shifted fiber in the SFL.Using the two pieces of single mode fiber connecting the 300 m dispersion-shifted fiber and 50/50 coupler,whose length difference is fixed at 3.3 m,the differential phase of counter-propagating DCPPs highly dependent on the dispersion properties of single mode fiber is managed at 2 for fully distributing DCPPs into which degrades the fidelity of DCPP source.The measured ratio of coincidence to accidental-coincidence of DCPPs from one port is approximately 1.8:1,which indicates that the coincidence counts mainly originate from accidental coincidence counts and extra coincidence counts from photon bunching and there are not any DCPPs outputting from one port.Meanwhile,the ratio of best measured coincidence to accidental-coincidence of DCPPs from two ports reaches 47:1,when the average power of two pumps is fixed at 0.026 mW.The experimental results demonstrate that the high purity and fully spatial separation DCPPs are successfully prepared in optical fibers,which is a very useful tool for realizing various quantum information systems.How the spatial state of outputting DCPPs depends on the length difference between single-mode fiber and detuning wavelength is also discussed in detail.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3