Solving the qubit coupled with reservoir under time-varying external field with Ket-Bra Entangled State Method

Author:

Ren Yi-Chong ,Fan Hong-Yi , ,

Abstract

In this paper, we first make a brief review of the general method of solving master equation of density operator, which includes the C-number method method and the super-operator method. The C-number can transform quantum master equation into Fokker-Plank equation or the differential equation of density matrix elements, and this method has a wide applicable range but the Fokker-Plank equation and differential equation are difficult to solve. Besides, the solution is not always applicable for any initial condition. The super-operator method can solve master equation efficiently compared with C-number method, however the solving process of super-operator method mostly depends on the characteristics of Lie algebra. For instance, if the corresponding Lindblad operator can be divided into the generators of Su(2) or Su(1,1) Lie group, the super-operator is no longer applicable. Thus although super-operator is more efficiently than C-number method, it has a narrow applicable range. Furthermore, other researchers have made much effort to develop super-operator method, for instance, S.J. Wang proposed the left and right action operator, the left operator is the same as the general operator, while the right action operator from the right side acts on other general operator, thus the explicit formation of super-operator can be given by this method. Fan proposed the thermal entangled state representation which can convert operator between real mode and fictitious mode. All these developments depend on Lie algebra, thus they all have a narrow applicable range just like super-operator method. We introduce a new Ket-Bra entangled state (KBES) method in this paper, which can transform master equation into Schrodinger-like equation with the corresponding Ket-Bra entangled state. Then one can use the method of Schrodinger equation such as time evolution method, perturbation method, etc. to solve the master equation. Compared with C-number method and super-operator method, the KBES method has several merits. 1) A wide applicable range, KBES method is applicable for any master equation of finite-level system in theory. 2) Compatibility with computer programming, the most crucial procedure is to calculate the exponent of Lindblad operator eFt which needs the diagonalization of F, and all this can be finished by computer. 3) Most mature methods of Schrodinger equation can be used to solve master equation because of the KBES method can transform master equation into Schrodinger-like equation. Then we study the model which two-level qubit is coupled with reservoir under time-varying external field, the corresponding master equation is deduced and solved by KBES method. Furthermore, we analyze the decoherence evolution of density operator and we consider the entanglement evolutions of two uncoupled qubit cases. We find that the external field seriously influences the decoherence process. The off-diagonal elements 10(t) become damply oscillated when the external field exists, and the frequency of oscillate keeps growing along with . Besides, the dynamic evolution of concurrence is also influenced by the external field, which leads to the occurrence of both entanglement sudden death and entanglement sudden birth, while the last ESB phenomenon only happens under the external field. Thus, we thought that one can suppress the decoherence and disentanglement process by exerting suitable time-varying external field on the open system, of course, the suitable external field can also be obtained by our KBES method in theory.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3