Author:
Li Na ,Bai Ya ,Liu Peng ,
Abstract
The terahertz (THz) radiation becomes an attractive light source utilized in molecular dynamic spectroscopy, remote sensing, medicine, communication and fundamental research. The controlling of the THz spectrum is necessary for the applications. In this paper, a method is proposed for controlling the terahertz spectra generated from the laser induced plasma by two-color pluses based on the contribution of plasma oscillation. The plasma current oscillation can shift the THz spectrum when the length of medium is less than plasma skin depth. Experimentally we use a short length of molecules by means of the molecular beam method. We investigate the changing spectrum of broadband ultrashort terahertz THz generated from a jet of nitrogen (N2) molecules pumped with the two-color laser pulses following the varying plasma density and plasma length. With the increase of plasma density and the decrease of the plasma length, we observe the increase of THz central frequency (0.8-1.4 THz) and the broadening of the THz spectral width (0.78-1.53 THz). The analysis and the calculation show that the THz spectrum changes due to the frequency and the width of the plasma resonance. This scheme of controlling the THz spectrum by changing the plasma density and length is easier to implement and do not need to use complex shaped optical pulses. The discovery provides a new way of controlling the low-frequency broadband THz spectrum.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献