First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework

Author:

Wang Xiao-Yuan ,Zhao Feng-Peng ,Wang Jie ,Yan Ya-Bin , ,

Abstract

Metal-organic frameworks (MOFs) have attracted a great deal of interest from both academia and industry due to their extensive potential applications. The tunable physical properties through the manipulation of composition have led to increasing attention to the exploration of the MOF applications. However, the tunability of physical property of MOF with external mechanical load, which usually steams from actual fabrication and application processes, has been rarely investigated. Here, ab initio (first-principles) density functional theory (DFT) calculations are performed to investigate the mechanical, electrical properties and strain engineering of a typical metal-organic framework, MOF-5. Preliminary calculations by using different pseudopotentials and cut-off energies are performed to verify the adopted critical parameters in subsequent simulations. Both the structural stability of MOF-5 and the effect of applied strain are investigated from an energetic point of view. With the increase of applied strain, the cohesive energy of MOF-5 decreases, inducing the reduction of structural stability. In addition, the variation of cohesive energy of MOF-5 shows an asymmetry under expansive and compressive conditions. By applying strain along different directions, the mechanical properties of MOF-5 are systematically investigated, and mechanical constants including Young's modulus, Poisson ratio and elastic constants are obtained. In addition, by analyzing the band gap of MOF-5, the intrinsic electrical property of MOF-5 is clarified. The band gap of MOF-5 is 3.49 eV, indicating that MOF-5 is a wide bandgap semiconductor, which is represented by the combination effect of both [Zn4O]6+ metal clusters and organic linkers. Analysis on the strain engineering of electrical properties of MOF-5 reveals that the applied strain induces the decrease of band gap of MOF-5, and thus leading to the increase of conductivity. This transition is induced by the decrease of conduction energy-level. Further studies on the variations of PDOS and covalent bond show that the strain engineering of electrical property of MOF-5 intrinsically originates from the variation of covalent bond in the organic linker. The applied strain apparently weakens the covalent bond, and thus inducing the relaxation and redistribution of electrons, which increases the activities of electrons, and finally leads to the overall increase of conductivity of MOF-5. This theoretical study quantitatively clarifies the tunability of electronic band gap of MOF-5 with external strain, and provides a theoretical guidance in the design optimization and property evaluation of gas sensors based on MOF-5.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J 2003 Nature 423 705

2. Kitagawa S, Kitaura R, Noro S 2004 Angew. Chem. Int. Ed. 43 2334

3. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J 2006 J. Mater. Chem. 16 626

4. Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T 2010 Nature Chem. 2 944

5. Zhong C L, Liu D H, Yang Q Y 2013 Constitutive relation of Metal-organic frameworks and its design (Beijing: Science Press) pp1-12 (in Chinese) [仲崇立, 刘大欢, 阳庆元 2013 金属-有机骨架材料的构效关系及设计(北京:科学出版社) 第 1-12 页]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3