A new method to estimate the p-GaN carrier concentration by analyzing the reversed current-voltage characteristic curve of p-n+ junction diode

Author:

Zhou Mei ,Li Chun-Yan ,Zhao De-Gang , ,

Abstract

GaN and its related nitride materials have been investigated for many years due to their extensive applications in semiconductor optoelectronics and microelectronics. The realization of p-GaN plays a key role in developing the GaN-based optoelectronic devices such as light-emittingdiodes, laser diodes and ultraviolet photodetectors. Furthermore, it is very significant to acuurately obtain the carrier concentration value of p-GaN layer for device design and fabrication. Usually the Hall measurements are employed to obtain the hole concentration of p-GaN layer. However, this method is not suitable for very thin samples, especially the p-GaN layer in the device structure, which is commonly very thin. Furthermore, the good Ohmic contact to p-GaN is not easy to realize. In consideration of the importance of p-GaN in determining the performance of GaN-based devices, it is necessary to find other new methods to measure or check the carrier concentration data of p-GaN. In this paper, a new method to estimate the carrier concentration of p-GaN by analyzing the current-voltage characteristic curve of p-GaN/n+-GaN diode is proposed. The main physical process is as follows: generally the carrrier concentration of p-GaN layer is far less than that of n+-GaN layer, and the depleted region is mainly located in the p-GaN. When the reversed bias voltage is very small, the diode shows conventional properties of p-n+ junction and the corresponding reversed current is very low since the p-GaN is not completely depleted. With the increase of reversed bias voltage, the depleted region of p-GaN also increases. Once the p-GaN is completely depleted, the case turns different. The diode will show Schottky junction properties and the corresponding reversed current increases obviously when the p-GaN is completely depleted under a certain reversed bias voltage since the ideal reversed current of Schottky junction is larger than that of p-n+ junction. The hole concentration could be derived according to the device physics if the bias voltage is discovered, which leads to the properties changing from the p-n+ junction to conventional Schottky junction. The simulation results confirm the idea, and the calculated p-GaN carrier concentration is almost equal to the originally assumed value. The proposed method is interesting and may be helpful to accelerate the research of p-GaN and related optoelectronic devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3