Subwavelength light focusing using quadric cylinder surface plasmonic lens with gold film slits filled with dielectric

Author:

Hu Chang-Bao ,Xu Ji ,Ding Jian-Ping , ,

Abstract

A novel plasmonic lens (PL) with simple nano-structure is proposed to realize the subwavelength focusing. The proposed PL is composed of the gold film with only five dielectric-filled nanoslits. The exit surface of the gold film is processed into quadric shape that can be parabolic, elliptical or hyperbolic cylinders. The film is fabricated to form five uniformly spaced nanoslits with different widths and depths. All five slits are symmetrically arranged with respect to the center of lens and filled with a dielectric medium (i.e., SiO2). Under the illumination of TM polarized beams, the surface plasmon polaritons (SPPs) are excited at the entrance surface of the PL, then pass through the SiO2-filled slits while acquiring specific phase retardations, and are finally coupled to the light waves in the free space. Each light wave originating from the slit can be regarded as an individual point source, and the constructive interference of light waves from slits gives rise to the beam focusing at the focal plane of the PL. We investigate the phase modulation mechanism of the PL and find that the focusing performance relies on the shape of exit surface, filling medium and geometric parameters of the slits. A suitable phase modulation can be achieved by adjusting the structure parameters of the PL with a specific exit surface shape. Three kinds of quadratic cylindrical PLs, i.e., parabolic, elliptical and hyperbolic cylindrical ones with continuous or stepped exit surface are designed to realize the focusing of TM polarized subwavelength beams in visible spectrum. The finite difference time domain (FDTD) method is employed to compute the light field and to investigate the focusing characteristics of the proposed PL. The performance measurements include the focal length, depth of focus (DOF) and full-width half-maximum (FWHM). The simulation results confirm that the proposed PL with a 2-m-diameter aperture can achieve the subwavelength focusing at a focal length of micron scale. The attainable smallest FWHM of the focal spot is 0.4050 (0 denoting the wavelength of the incident light) which is well beyond the diffraction limit. It is also worth mentioning that the step-like cylindrical PL can yield a sharper focal spot than the continuous cylindrical PL. For example, the FWHM of focal spot produced by the stepped elliptical cylindrical PL is about 92% of that produced by the continuous elliptical cylindrical PL. The proposed PL has the advantages of simple and compact structure with much smaller lateral dimension and easy integration with other photonic devices. Our study helps design the easy-to-fabricate PLs and facilitates applications of plasmonic devices in the fields such as optical micro manipulation, super-resolution imaging, optical storage and biochemical sensing.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3