Computational fluid dynamics analysis and experimental study of sounding temperature sensor

Author:

Dai Wei ,Liu Qing-Quan ,Yang Jie ,Su Kai-Feng ,Han Shang-Bang ,Shi Jia-Chi , , , , ,

Abstract

Owing to the fact that the increasing amount of attention has been focused on numerical weather forecast and climate change research, it is desired that the observation error of upper air temperature with using sounding temperature sensors can be reduced down to 0.1 K. However, the temperature measurement errors of bead thermistor sounding temperature sensors, induced by solar radiation, are on the order of 1 K or more, which is a few orders of magnitude larger than the errors produced by the measurement circuits and digital signal processing systems in radiosondes. Hence, the solar radiation error poses an important bottleneck for improving the measurement accuracy. To tackle this problem, a numerical analysis method is proposed in this research. By employing a computational fluid dynamics (CFD) method, the influences of various solar radiation intensity, sensor angles, and air pressures from sea level to 20 km altitude on temperature measurement accuracy are studied. In this CFD model, the boundary conditions of external convection and solar radiation of the bead thermistor are taken into consideration. The modeling results indicate that solar radiation intensity and altitude are important factors that affect the amplitude of the radiation error. With the elevation increasing from sea level, the solar heating error appears to have an exponential correlation with the altitude, which exhibits a growing slop rate. When the sensor angle is 90o, the radiation error of a bead thermistor sensor probe is minimal. The simulation results are fitted by a Levenberg-Marquardt method and a global optimization method. A correction equation of the radiation error is obtained, where the altitude of the sensor and solar radiation intensity act as two major variables in the equation. In order to verify the equation obtained in this study, an experimental platform for solar radiation error, which includes a low-pressure temperature chamber, a rotation apparatus, an LED-based radiation source, and a wireless communication system, is designed and constructed. It can be found that the solar radiation errors of the bead thermistor based on fluid dynamics numerical calculation are generally consistent with experimental data. The average offset and root mean square error between the correction equation and experimental results are 0.017 K and 0.023 K, respectively, which can demonstrate the accuracies of the computational fluid dynamics method, the Levenberg-Marquardt method and the global optimization method proposed in this research. The methods and techniques introduced in this paper may open the way for correcting the solar radiation errors of the bead thermistor sounding temperature sensors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3