Numerical simulation of a class of FitzHugh-Nagumo systems based on the lattice Boltzmann method

Author:

He Yu-Bo ,Tang Xian-Hua ,Lin Xiao-Yan , ,

Abstract

The lattice Boltzmann method (LBM) was proposed as a novel mesoscopic numerical method, and is widely used to simulate complex nonlinear fluid systems. In this paper, we develop a lattice Boltzmann model with amending function and source term to solve a class of initial value problems of the FitzHugh Nagumo systems, which arises in the periodic oscillations of neuronal action potential under constant current stimulation higher than the threshold value. Firstly, we construct a non-standard lattice Boltzmann model with the proper amending function and source term. For different evolution equations, local equilibrium distribution functions and amending function are selected, and the nonlinear FitzHugh Nagumo systems can be recovered correctly by using the Chapman Enskog multi-scale analysis. Secondly, through the integral technique, we obtain a new method on how to construct the amending function. In order to guarantee the stability of the present model, the L stability of the lattice Boltzmann model is analyzed by using the extremum principle, and we get a sufficient condition for the stability that is the initial value u0(x) must satisfy |u0(x)|1 and the parameters must satisfy i-(1+)(t)/(x), (i=1-4). Thirdly, based on the results of the grid independent analysis and numerical simulation, it can be concluded that the present model is convergent with two order space accuracy. Finally, some initial boundary value problems with analytical solutions are simulated to verify the effectiveness of the present model. The results are compared with the analytical solutions and numerical solutions obtained by the modified finite difference method (MFDM). It is shown that the numerical solutions agree well with the analytical solutions and the global relative errors obtained by the present model are smaller than the MFDM. Furthermore, some test problems without analytical solutions are numerically studied by the present model and the MFDM. The results show that the numerical solutions obtained by the present model are in good agreement with those obtained by the MFDM, which can validate the effectiveness and stability of the LBM. In conclusion, our model not only can enrich the applications of the lattice Boltzmann model in simulating nonlinear partial difference equations, but also help to provide valuable references for solving more complicated nonlinear partial difference systems. Therefore, this research has important theoretical significance and application value.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3