Rotor blades radar echo modeling and its mechanism analysis

Author:

Chen Yong-Bin ,Li Shao-Dong ,Yang Jun ,Cao Fu-Rong ,

Abstract

Since the rotorcraft can easily be recognized by using the micro-Doppler (m-D) signature of rotor blades, the m-D effect induced by micro-motion dynamics plays an important role in target recognition and classification. However, the existing researches on the rotor blades pay little attention to the mechanism of the time-domain and time-frequency-domain flash phenomena. To comprehensively explain the flash phenomena from physics, the modeling of the rotor blades and the mechanism of the flash phenomena are studied in this paper. Firstly, for the rotor blades, the target cannot be represented as a rigid, homogeneous line nor several points. Taking the scattering coefficients and the interval of adjacent scattering points (the scattering point distribution on the blade) into consideration, the scattering point model of the rotor blade echo is established, and the influence of the scattering point distribution on the radar echo is analyzed as well. The detailed mathematic analysis and comparison results show that the conventional integral model of the rotor blade is only a special case of the scattering point model. Furthermore, In the case where the scattering point model is approximately equivalent to the conventional integral model, the critical interval of adjacent scattering points is deduced by mathematic analysis. Secondly, on the basis of the proposed model above, the physical mechanism of the time-domain and time-frequency-domain flash phenomena is studied from the viewpoint of the electromagnetic (EM) scattering. On the one hand, considering the EM scattering and scattering point distribution, the mechanism of the time-domain flashes is analyzed. Ideally, when the rotor blade is at the vertical position relative to the radar line of sight, i.e., at the flash time, the blade has the strongest echo. At this moment, the radar echo consists of echoes of all scattering points, thus inducing the time-domain flashes. At the non-flash time, the scattering points at the tip of blade and hub of rotor have stronger scattering intensities, so the echo is much weaker than that at the flash time. On the other hand, the time-frequency analysis and the cross range resolution are simultaneously used to analyze the mechanism of the time-frequency-domain flashes in the m-D signature. The m-D signature of the rotor blades consists of three parts: the time-frequency-domain flashes, the sinusoidal Doppler curves, and the zero-frequency band. At the flashes time, the Doppler frequency of adjacent scattering points cannot be distinguished, thus the m-D signature has the frequency band caused by all scattering points, i.e., the time-frequency-domain flashes appear. At the non-flash time, the sinusoidal Doppler curves and the zero-frequency band are caused by the scattering points at the tip of blade induced by the scattering points at the hub of rotor respectively. Finally, the simulation results about the scattering point model with the different intervals of adjacent scattering points show that the effectiveness of the proposed model and the correctness of theoretical analysis.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3