Particle-in-cell simulation of a new X-band low-impedance high power microwave source

Author:

Yan Xiao-Lu ,Zhang Xiao-Ping ,Li Yang-Mei , ,

Abstract

High power microwave (HPM) source is attractive in generating gigawatt (GW) class microwaves based on the beam-wave interaction. Generally, HPM source with a high beam-wave conversion efficiency has a higher impedance. To improve the single-tube output power of HPM source, reducing the impedance of the device and increasing its power capacity are necessary. In this paper, a new low-impedance HPM source is proposed and proved to be capable of generating two phase-locked high power microwaves, which makes it promising to realize a higher combined power in a single HPM device.The new low-impedance HPM device consists of a two-cavity TKA (denoting the outer sub-source in the following) and a multiwave Cerenkov generator (referring to the inner sub-source below) inserted in the TKA inner conductor. These two sub-sources are connected in parallel and share a common magnetic field. A dual-concentric annular cathode is used in this microwave source, which is capable of emitting two concentric annular electron beams and driving the internal and external sub-source simultaneously. The advantages of this device are reducing the impedance and improving the injection electric power. When a voltage pulse is applied to the diode, part of microwaves generated in the inner subsource will leak into the outer sub-source (i.e., TKA) through the A-K gap. By amplifying the leakage microwaves, the TKA will be easily locked by the inner sub-source. Considering the fact that the microwave source consists of two sub-sources, the power capacity will also be greatly improved.As a result, particle-in-cell simulation indicates that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, two microwave beams that have a nearly identical frequency of 9.72 GHz and output powers of 1.20 GW and 2.58 GW respectively, are generated. The corresponding power conversion efficiencies are 28% and 30%, respectively. The frequency difference between these two microwaves fluctuates within 3 MHz and their phase difference is not in excess of 3. When the diode voltage changes from 665 kV to 709 kV, frequency difference between the two sub-sources fluctuates within 3 MHz and their phase difference fluctuation is within 5 in one voltage burst; the phase difference changes 10 in this voltage range. The impedance of this HPM source is as low as 36 .To sum up, the new HPM source proposed in this paper has a lower impedance and higher power capacity. The phase difference between the inner sub-source and the outer sub-source is very stable and favorable for the coherent power combination, which indicates that the new HPM source promises to realize a higher output power in a single-tube device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference17 articles.

1. He J T, Zhong H H, Liu Y G 2004 Chin. Phys. Lett. 21 1111

2. Zhang X P 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology)

3. Arman M J 1994 Proc of the 7th National Conference on HPM Technology, Monterey CA 1999 p251

4. Arman M J 1995 Proc of SPIE, San Diego CA, July 9 1995 p21

5. Arman M J 1996 IEEE Trans. Plasma Sci. 24 964

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3