Double reflection of spin-orbit-coupled cold atoms

Author:

Huang Zhen ,Zeng Wen ,Gu Yi ,Liu Li ,Zhou Lu ,Zhang Wei-Ping , ,

Abstract

Artificial spin-orbit coupling in neutral cold atom have been experimentally implemented in alkali-metal atoms. Nowadays people begin to explore its possible applications. One of the most interesting applications is the atomic mirror, which is a key element in atom optics. And spin-orbit coupling provides the atomic beam with the possibility that the atomic spin can flip during its propagation, thus can be used to prepare the quantum-state-selective atomic mirror. In 2008, Juzeliūnas, et al. [Juzeliūnas G, et al. 2008 Phys. Rev. Lett. 100 200405] studied a spin-orbit-coupled matter wave packet of cold atom gas impinging on an infinite step potential created by the optical light field. Results showed that there is not only ordinary specular reflection, but also non-specular one. The reflected atoms split into two beams and double reflection takes place. Based on the previous study, here we consider a matter wave packet of spin-orbit-coupled cold atom gas impinging on a finite step potential created by the optical light field. Due to the effect of the spin-orbit coupling, in addition to the propagating state, the eigenstates of cold atoms include evanescent state and oscillating evanescent state. Under suitable conditions double reflection will take place. If there are just evanescent waves in the step potential, total internal reflection will take place. In other words, when there is propagating wave in the step potential, partial reflection will take place. By taking into account both the total internal reflection and partial reflection, we study not only the polarization rate but also the reflectivity each as a function of incident energy, incident angle and spin-orbit coupling strength. The properties different from those of previous studies are found. In the case of total internal reflection, we find that the polarization rate of the reflected atoms is sensitive to incident angle instead of the spin-orbit coupling strength and incident energy. While in the case of partial reflection, all these factors strongly affect the polarization rate and reflectivity. We carefully study these properties and find that, on one hand, high efficiency atomic mirror can be acquired in the case of total internal reflection, and on the other hand, we can acquire the different polarization rates by adjusting the incident angle, the spin-orbit coupling strength and incident energy in the case of partial reflection.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3