Morphology simulation and mechanical analysis of primary dendrites for continuously cast low carbon steel

Author:

Zuo Xiao-Jing ,Meng Xiang-Ning ,Huang Shuo ,Wang Xin ,Zhu Miao-Yong ,

Abstract

The initial growing dendrite is influenced significantly by the complicated solidification conditions in continuously oscillating mold. The uneven growth of dendrite causes some defects seen commonly such as internal crack, subsurface porosity, subsurface inclusion and other defects of continuous casting billet. The induced initial defects in mold can be expanded and propagated in the following process such as secondary cooling, straightening, rolling and other subsequent handling procedure and then evolve into serious defects that can restrict the development and the quality refinement of final steel products. The mechanical stress caused by mold oscillation and the melt flowing is a crucial factor that leads to the uneven microstructure growth of initial solidifying shell in continuous casting mold. In this work, we simulate the growth and the morphology evolution of primary dendrites in mold area by using the cellular automaton (CA) method in combination with the actual conditions for continuously cast low carbon billet (Fe-0.6 wt.%C). Further, the mechanical state of initial dendrite is analyzed by regarding primary dendrite as a cantilever beam and its mechanical stress is calculated by combining thermo-physical properties and flow rate of steel based on the principle of materials mechanics to shed light on the formation of initial defects formation in mold area of continuous casting process. The results show that the solute concentration of initial dendrite tip gradually increases with undercooling from 2 to 10 K, and the maximum concentration rises by 0.07% when the increment of undercooling is 2 K. The length of dendrite arm increases significantly with undercooling from 2 to 6 K. However, the length of dendrite arm remains steady in a stable growth rate of 0.08 mms-1 when the undercooling is enhanced from 6 to 10 K. The increase of undercooling reduces the bending stress at dendrite root when the flow rate of molten steel is improved from 0.13 to 0.33 ms-1, while the mechanical stress continuously increases with the growth of primary dendrite at a constant undercooling. The bending stress of dendrite root has a high possibility to exceed its critical fracture strength under the condition of undercooling below 6 K or dendrite grow up more than 1 s. The primary dendrite is likely to be fractured and form initial defects of billet.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 449 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 449]

2. Dou K, Qing J S, Wang L, Zhang X F, Wang B, Liu Q, Dong H B 2014 Acta Metall. Sin. 50 1505 (in Chinese) [窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标 2014 金属学报 50 1505]

3. Li R, Shen H D, Feng C M, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 物理学报 62 188106]

4. Chopra M A, Glicksman M E, Singh N B 1988 Metall. Mater. Trans. A 19 3087

5. Koss M B, Lacombe J C, Tennenhouse L A 1999 Metall. Mater. Trans. A 30 3177

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3