Research of malware propagation in complex networks based on 1-D cellular automata

Author:

Song Yu-Rong ,Jiang Guo-Ping ,

Abstract

In this paper, based on 1-D cellular automata, the probabilistic behaviors of malware propagation in complex networks are investigated. Neighborhood and state transition functions with integrated expression are established and two models of malware propagation are proposed to evaluate the probabilistic behavior of malware propagation in various networks. We run the proposed models on nearest-neighbor coupled network (NC) and Erdos-Renyi (ER) random graph network and Watts-Strogatz(WS) small world network and Barabasi-Albert (BA) power law network respectively. Analysis and simulations show that, the proposed models describe perfectly the dynamic behaviors of propagation in the above networks. Furthermore, the proposed models describe not only the average tendency of malware propagation but also the rare events such as saturation and extinction of malware, and overcome the limitation occurring in a deterministic model based on mean-field method that describes only the average tendency of malware propagation and neglects the probabilistic event. Meanwhile, the result of simulations shows that the heterogeneity of degree distribution and local spatial interaction are key factors affecting the malware propagation and immunization.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach Infectious Disease Outbreak Through Grid-Based Model;Lecture Notes in Networks and Systems;2021-11-04

2. Undirected Congruence Model: Topological characteristics and epidemic spreading;Physica A: Statistical Mechanics and its Applications;2021-03

3. Advanced malware propagation on random complex networks;Neurocomputing;2021-01

4. A discrete proposal for modelling the infectious diseases expansion;2020 XLVI Latin American Computing Conference (CLEI);2020-10

5. An information source localization algorithm based on cellular automata model;International Journal of Modern Physics B;2019-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3