Author:
Zhang Lin ,Xu Song-Ning ,Li Wei ,Sun Hai-Xia ,Zhang Cai-Bei ,
Abstract
Structural changes of three molten CuN(N=57,58,59) clusters during freezing and two Cu55 clusters with perfect icosahedral geometries in the coalescence processing at 300 K are investigated by molecular dynamics simulations based on the embedded atom method. Simulation results show that both freezing and coalescing processes have distinct stages. There exist great differences in atomic movement and microstructure change among the three CuN(N=57,58,59) clusters during freezing, which result in the different patterns of atomic packing in the three clusters. Of the three clusters, the ordered degree of the Cu59 cluster is the lowest. Initially structural changes of the two Cu55 cluster during coalescence result from large position displacements of atoms due to the deformation, then the atomic diffusion plays a mainly role in changing structure. The atoms far from the contact region between the two clusters can remain their origin structures.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献