Study of the LC resonance giant magneto-impedance effect

Author:

Pan Hai-Lin ,Cheng Jin-Ke ,Zhao Zhen-Jie ,He Jia-Kang ,Ruan Jian-Zhong ,Yang Xie-Long ,Yuan Wang-Zhi ,

Abstract

CoP/Insulator/BeCu composite wire incorporating a capacitor was prepared by chemical deposition. This new type of composite wire functions as an LC resonance circuit element by itself, in which large LC resonance giant magneto-impedance (LCR-GMI) effect was observed when the driving frequency approached to the LC resonance frequency. The properties of LCR-GMI in the composite wire with a length of 95 cm were investigated. Its LCR-GMI ratio and field sensitivity are 4875% and 046%/A·m-1 at the resonance frequency of 29 MHz, respectively, which are higher than those of the ordinary composite wire. When the carrier frequency deviates from the resonance frequency, LCR-GMI ratio decreases obviously, showing distinct selectivity of frequency. Meanwhile, we proposed an equivalent circuit model based on the characteristics of the LC resonance composite wire, and simulated the experimental curves. The simulation results agreed well with the experimental data. Using the equivalent circuit model, we analyzed the physical mechanisms of LCR-GMI and the influence of wire length on the LCR-GMI effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3