In-situ polymerization and properties of poly (2,5-dibutyloxy-1,4-phenylene vinylene)/multi-walled carbon nanotube composites

Author:

Sun Jian-Ping ,Weng Jia-Bao ,Huang Xiao-Zhu ,Ma Lin-Pu ,

Abstract

The photoelectric composites of poly (2,5-dibutyloxy-1,4-phenylene vinylene)/ multi-walled carbon nanotubes (PDBOPV/MWCNTs) were prepared by in-situ polymerization. The results of Fourier transform infrared spectroscopy and Raman spectroscopy indicate that PDBOPV is coated on the surface of MWCNTs. The dimensions of the composite were observed by high resolution transmission electron microscopy,the diameter of PDBOPV/MWCNTs was measured to be about 35—45 nm,and the thickness of the coated PDBOPV is about 15 nm. The absorption of PDBOPV/MWCNTs is strengthened with the contents of MWCNTs increasing,and a red shift of the absorption peak can be clearly observed in the UV-Vis spectrum. Photoluminescence spectroscopy indicates that the maximum emission wavelength of the PDBOPV/MWCNTs is blue-shifted and intensity of photoluminescence decreases with increasing MWCNTs concentration. PDBOPV/MWCNTs show fluorescence quenching,which involves the inter-molecular photo-induced charge transfer process. The optical band gap of PDBOPV/MWCNTs decreases gradually with the contents of MWCNTs increasing. Third-order optical nonlinear susceptibility of PDBOPV/MWCNT composites were measured by degenerate four wave mixing. The results showed that the third-order nonlinear optical responses of PDBOPV/MWCNT composites were enhanced gradually when MWCNT content increased,which can be attributed to inter-molecular photo-induced electron transfer and π-π electron coupling between PDBOPV and MWCNTs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3