A fiber decorated by colloidal photonic crystal

Author:

Liu Qing ,Wang Ming ,Guo Wen-Hua ,Yan Hai-Tao ,Yu Ping ,

Abstract

A method of fabricating fiber decorated by colloidal photonic crystal is devised. Three-dimensional nanostructure colloidal crystal on the end face of optical fiber was grown by isothermal heating evaporation induced self-assembly method. The optical fiber with colloidal crystals was connected to another lapped optical fiber by glass capillary,and the fiber decorated by colloidal photonic crystal was formed. The nanostructural morphology of the colloidal crystal was examined by SEM. The optical characteristics of the colloidal crystal was also analyzed. The spectral feature of the optical fiber colloidal crystal was measured by using optical sensing analyzer. It has been found that the optimal conditions for a good quality crystal are an evaporation temperature of 40 ℃ with a volume fraction of 0.5% and a deposition time of 12 hours.SEM reveals that the colloidal crystal on the end face of optical fiber has face-centered-cubic structure. Transmission measurement shows the existence of photonic band gap,and the stopgap is located at 1365 nm.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3