Author:
Wen Bin ,Zhao Ji-Jun ,Zhang Peng-Bo ,Qin Ying , , ,
Abstract
To investigate the interaction between high-power pulsed laser and metal materials,we established a two-dimensional numerical model. The laser-induced two-dimensional temperature distribution was simulated using a finite difference method. From comparison of temperature evolution under different pulse time,spot sizes and energies,it can be seen that the rise of temperature in the initial period is faster than that in the later periods. Isothermal diagram shows that the temperature rising rate is fastest in the center of laser irradiating zone and that the ablation depth is in the range of 1—5 μm. As the laser pulse duration becomes longer,the ablation zone becomes narrower and deeper. As the laser spot diameter increases,the ablation zone becomes wider and shallower. The present numerical results indicate that: (1) the ablation shape and depth sensitively depend on the laser shape,pulse duration and power density, (2) with laser power density in the order of 109 W/cm2,the ablation area is roughly of the orgc of the laser spot. These results are helpful for designing relevant laser parameters in experiments.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献