Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers

Author:

Jiang Jian ,Chang Jian-Hua ,Feng Su-Juan ,Mao Qing-He ,

Abstract

The quasi-phase-matched (QPM) wavelength acceptation bandwidth for a difference frequency generation (DFG)mid-IR laser source with fiber lasers as the fundamental sources is effectively broadened by using the dispersion relations and its temperature characteristic of periodically poled MgO-doped LiNbO3 (PPMgLN). Our simulation results show that, with an erbium-doped fiber laser (EDFL) and a ytterbium-doped fiber laser (YDFL) respectively operating near 1550 and 1060 nm wave-bands as the signal source and pump source, for the same mid-IR wavelength regions, the allowable wavelength range given by the QPM condition for the pump wave is much larger than that for the signal wave. When the wavelength of the signal wave is fixed at 1560 nm, for a given optimized crystal temperature, the acceptance bandwidth for the pump wave is over 17 nm, corresponding to the acceptance bandwidth for the idler wave of about 180 nm. Based on it, by using a multiwavelength YDFL and a single wavelength EDFL cascaded by an erbium-doped fiber amplifier (EDFA) respectively as the pump source and the signal source, 14-wavelength mid-IR laser lines, with a spacing of about 14 nm in between, are obtained simultaneously with our QPM-DFG laser system when both the temperature and the grating period of the PPMgLN used being kept unchanged at 73.5 ℃ and 30 μm respectively. Moreover, the mid-IR multiwavelength laser lines may be tuned synchronously by varying the signal wavelength.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3