Effect of interfacial electronic structure on conductivity and space charge characteristics of core-shell quantum dots/polyethylene nanocomposite insulation

Author:

Wang He-Yu,Li Zhong-Lei,Du Bo-Xue,

Abstract

To investigate the effect of the interface electronic structure of core-shell quantum dots on the conductivity and space charge characteristics of polyethylene insulation, nanocomposite insulations, namely CdSe@ZnS/LDPE and ZnSe@ZnS/LDPE, are synthesized. The study focuses on elucidating the evolution patterns of DC conductivity and space charge in the nanocomposite insulation, and analyzing the effect of the interfacial electronic structure of core-shell quantum dots on the distribution of charge traps. Comparative analysis reveals that in contrast to LDPE insulation, ZnSe@ZnS/LDPE nanocomposite insulation demonstrates a substantial reduction in DC conductivity by 47.2% and a decrease in space charge accumulation by 40.3% under the conditions of elevated temperature and strong electric field. The increase of trap energy level means an enhanced trap effect on charger carriers. According to density functional theory, the band structure characteristics of core-shell quantum dots integrated with polyethylene are computationally assessed. The findings underscore that the band misalignment at the core-shell interface and the shell-insulation interface induces shifts in the conduction band bottom and at the valence band top, respectively. These shifts impose a confinement effect on electrons and holes, with the extent of this effect escalating with the augment of the difference in band gap between the core layer and the shell layer. Consequently, this phenomenon curtails carrier migration, thereby inhibiting space charge accumulation under the conditions of elevated temperature and strong electric fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference32 articles.

1. Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402
俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402

2. Li Z L, Du B X 2018 IEEE Electr. Insul. Mag. 34 30

3. Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179
杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179

4. He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417
何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417

5. Mazzanti G, Diban B 2021 IEEE Trans. Power Delivery 36 3784

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3