Simulation Study on "Wisp" Electron Spectra Generated by NWC Very Low Frequency Transmitter Signals

Author:

Liu Yang-Xi-Zi ,Xiang Zheng ,Zhou Chen ,Ni Bin-Bin ,Dong Jun-Hu ,Hu Jing-Le ,Wang Jian-Hang ,Guo Hao-Zhi

Abstract

Very low frequency signals emitted by worldwide spread ground-based man-made transmitters, which primarily propagate within Earth-ionospheric waveguides, are used for submarine communication. A portion of these signals penetrates the ionosphere and leaks into the magnetosphere when the ionospheric electron density decrease on the nightside due to the attenuated sunlit. VLF transmitter signals in the magnetosphere can scatter electrons in the inner radiation belt at energies of 100s keV into the drift loss cone through cyclotron resonance, which is an important loss mechanism for electrons in the inner radiation belt, and also playing an important role in transferring energy and mass from magnetosphere to ionosphere. Electrons scattered by transmitter signals exhibit “wisp” signature in <i>L</i>-<i>E</i><sub><i>k</i></sub> spectrum, satisfying the first-order cyclotron resonance relationship between electrons and the transmitter signals. The “wisp” spectrum can be clearly observed by Low Earth Orbit satellites, offering opportunities to study wave-particle interactions in near-Earth space. In this study, using the Drift-Diffusion-Source model, we reproduce the “wisp” spectrum formed by scattering effects of NWC transmitter signals observed by DEMETER satellite on March 19, 2009. Our simulation results suggest that the equatorial pitch angle of electrons observed by DEMETER varies with the longitude, resulting in distinctions in the observed “wisp” spectrum along different longitudes. Specifically, as the satellite approaches South Atlantic Anomaly (SAA) region, both the energy range and flux level of the observed “wisp” spectrum gradually increase. When using the wave normal angle model (the central wave normal angle is 60°) and the background electron density model from previous studies, the energy range of the simulated “wisp” spectra is higher than the observations. Adjusting the central wave normal angle to 40° or increasing the background density by a factor of 1.3, the simulated results agree well with the observations. Our results clarify the scattering effect of NWC transmitter signals on electrons in the radiation belt, and underscore the importance of analyzing the formation of “wisp” spectrum for understanding wave-particle interactions in near-earth space. Additionally, the Drift-Diffusion-Source model can be used to study wave-particle interactions in the inner radiation belt, providing an important basis for developing radiation belt remediation technology.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3