Waveform measurement of a low-frequency electric fields with a Rydberg atom-based sensors

Author:

Zhang Xue-Chao ,Qiao Jia-Hui ,Liu Yao ,Su Nan ,Liu Zhi-Hui ,Cai Ting ,He Jun ,Zhao Yan-Ting ,Wang Jun-Min , , , ,

Abstract

The high polarizabilities of Rydberg atoms enable multi-dimensional parameter measurements of electromagnetic fields. In this paper we report an atomic antenna by employing Rydberg atoms in room-temperature cesium vapor cell. We employ the cascade-type two-photon excitation electromagnetically induced transparency (EIT) spectroscopy to measure the Rydberg energy levels. EIT is a destructive interference effect with a narrow linewidth, and it can be used to detect a small electric field by Autler-Townes splitting or Stark shifts.<br>In experiments, a low-frequency electric field with ~kHz frequency is introduced by using built-in electrode technique in the room-temperature atomic gas cell. The interaction between Rydberg atom and electric field induces the Stark shifts, where the electric field amplitude is converted into the corresponding two-photon detuning by EIT effect. Furthermore, the low-frequency electric field amplitude is converted into the corresponding intensity signal of probe beam in EIT spectroscopy, that allow to measure the electric field frequencies. Under weak electric field conditions, there is an approximate linear relationship between EIT transmission signal and input electric field amplitude, which enables to detect waveform, amplitude, and frequency parameter. We have demonstrated an atomic antenna with optical probing method. The EIT effect allows increasing the response bandwidth from ~MHz to hundreds of MHz with increasing the probe beam and coupling beam power. Under this condition, the EIT spectroscopy can extend a measure bandwidth to ~MHz, that will provide a scalable approach for high-frequency electric fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference33 articles.

1. Zhang X, Bai Q, Xia S H, Zheng F J, Chen J F 2006 Journal of Instrumentation and Metering 27 1433(in Chinese)[张星, 白强, 夏善红, 郑凤杰, 陈绍凤 2006 仪器仪表学报 27 1433]

2. Xiong L, Song D J, Zhang Y L, Tang T, Xiao B, Yang F, He W 2011 High Voltage Electrical Appliances 47 97 (in Chinese)[熊兰, 宋道军, 张又力, 唐涛, 肖波, 杨帆, 何为 2011 高压电器 47 97]

3. Hu Z W 2010 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [胡泽文 2010 博士学位论文 (重庆: 重庆大学)]

4. Wei M J, Zhang H X, Shi F, Xie W, Zhang Y, Fang C 2019 Power system automation43 148 (in Chinese) [韦明杰, 张恒旭, 石访, 谢伟, 张勇, 方陈 2019 电力系统自动化 43148]

5. Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z 2018 Sensors 18 1053(in Chinese)[肖德, 马琪, 谢轩, 郑琪, 张志 传感器 18 1053 ]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3