Measurement of low-frequency electric field waveform by Rydberg atom-based sensor

Author:

Zhang Xue-Chao,Qiao Jia-Hui,Liu Yao,Su Nan,Liu Zhi-Hui,Cai Ting,He Jun,Zhao Yan-Ting,Wang Jun-Min, , , ,

Abstract

The high polarizability of Rydberg atoms enables the multi-parameters measurement of electromagnetic fields. In this paper, we report on an atomic antenna based on Rydberg atoms in a room temperature vapor cell. The EIT is a destructive interference spectroscopy with a narrow linewidth and can be used to detect small electric fields through Autler-Townes splitting or Stark shifts. In our experiments, we employ cascade-type two-photon excitation electromagnetically induced transparency (EIT) spectroscopy to measure the shift of the Rydberg energy level. We introduce a low-frequency electric field (~kHz frequency) using a built-in electrode technique in the cesium cell. The interaction between the Rydberg atom and electric field induces the Stark shifts, where the amplitude of the electric field is converted into corresponding two-photon detuning by the EIT effect. Furthermore, the amplitude of the low-frequency electric field is converted into an intensity signal of EIT probe beam. Under weak field conditions, it is an approximate linear relationship between EIT transmission signal and input electric field amplitude, enabling measurement of waveform, amplitude, and frequency. We have demonstrated optical measurements of low-frequency electric field using Rydberg atoms. By increasing the power of probe beam and coupling beam, the EIT can increase the response bandwidth from ~MHz to hundreds of MHz. This provides a scalable approach for measuring high-frequency electric fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference30 articles.

1. Zhang X, Bai Q, Xia S H, Zheng F J, Chen S F 2006 J. Instrument. Meter. 27 1433
张星, 白强, 夏善红, 郑凤杰, 陈绍凤 2006 仪器仪表学报 27 1433

2. Xiong L, Song D J, Zhang Y L, Tang T, Xiao B, Yang F, He W 2011 High Volt. Electr. Appl. 47 97
熊兰, 宋道军, 张又力, 唐涛, 肖波, 杨帆, 何为 2011 高压电器 47 97

3. Wang J G, Lin W, Li J, Mao C B, He W, Wang P 2010 Transducer and Microsystem Technologies 29 21
汪金刚, 林伟, 李健, 毛长斌, 何为, 王平 2010 传感器与微系统 29 21

4. Wei M J, Zhang H X, Shi F, Xie W, Zhang Y, Fang C 2019 Power System Automation 43 148
韦明杰, 张恒旭, 石访, 谢伟, 张勇, 方陈 2019 电力系统自动化 43 148

5. Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z 2018 Sensors 18 1053
肖德, 马琪, 谢轩, 郑琪, 张志 2018 传感器 18 1053

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3