The depiction of Hamiltonian PT-symmetry

Author:

Zhang Hui-Jie,He Kan, , ,

Abstract

The theory of PT-symmetry describes the non-hermitian Hamiltonian with real energy levels, which means that the Hamiltonian <i>H</i> is invariant neither under parity operator <i>P</i>, nor under time reversal operator <i>T</i>, <inline-formula><tex-math id="M2">\begin{document}$ PTH = H $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M2.png"/></alternatives></inline-formula>. It originated from the Hamiltonian is real and symmetric is not a necessary condition for guarantee the fundamental axioms of quantum mechanics: real energy levels and unitary of the time evolution. The theory of PT-symmetry plays a significant role in the quantum physics and quantum information science. Where the problem that how to describe PT-symmetry of Hamiltonian was focused on deeply. In the paper, we propose the definition of operator <i>F</i> based on the PT-symmetry theory and the normalized eigenfunction of Hamiltonian. Then we give the first description of the PT-symmetry of Hamiltonian in dimensionless cases after finding the features of commutator and anti-commutator of operator <inline-formula><tex-math id="M3">\begin{document}$ CPT $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M3.png"/></alternatives></inline-formula> and operator <i>F</i>. Furthermore, we discover this method also can quantify the PT-symmetry of Hamiltonian in dimensionless cases. <inline-formula><tex-math id="M4">\begin{document}$ I(CPT,F)=\|[CPT,F]\|^{CPT} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M4.png"/></alternatives></inline-formula> represents the part of PT-symmetry broken, and <inline-formula><tex-math id="M5">\begin{document}$ J(CPT,F)=\|\{CPT,F\}\|^{CPT} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M5.png"/></alternatives></inline-formula> represents the part of PT-symmetry. If <inline-formula><tex-math id="M6">\begin{document}$ I(CPT,F)=\|[CPT,F]\|^{CPT} = 0 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M6.png"/></alternatives></inline-formula>, Hamiltonian <i>H</i> is global PT-symmetric. Once <inline-formula><tex-math id="M7">\begin{document}$ I(CPT,F)= $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M7.png"/></alternatives></inline-formula><inline-formula><tex-math id="M7-1">\begin{document}$ \|[CPT,F]\|^{CPT}\neq0 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M7-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M7-1.png"/></alternatives></inline-formula>, it shown that Hamiltonian H is PT-symmetric broken. In addition, we propose another method to describe PT-symmetry of Hamiltonian based on real and imaginary parts of eigenvalues of Hamiltonian, which only used to judge whether the Hamiltonian is PT symmetric. <inline-formula><tex-math id="M8">\begin{document}$ ReF=\dfrac{1}{4}\|(CPTF + F)\|^{CPT} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M8.png"/></alternatives></inline-formula> represents the sum of squares of real part of the eigenvalue <inline-formula><tex-math id="M9">\begin{document}$ En $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M9.png"/></alternatives></inline-formula> of Hamiltonian <i>H</i>, <inline-formula><tex-math id="M10">\begin{document}$ ImF=\dfrac{1}{4}\|(CPTF - F)\|^{CPT} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M10.png"/></alternatives></inline-formula> is the sum of imaginary part of the eigenvalue <inline-formula><tex-math id="M11">\begin{document}$ En $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M11.png"/></alternatives></inline-formula> of a Hamiltonian <i>H</i>. If <inline-formula><tex-math id="M12">\begin{document}$ ImF= 0 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M12.png"/></alternatives></inline-formula>, Hamiltonian <i>H</i> is global PT-symmetric. Once <inline-formula><tex-math id="M13">\begin{document}$ ImF\neq0 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M13.png"/></alternatives></inline-formula>, Hamiltonian <i>H</i> is PT-symmetric broken. If <inline-formula><tex-math id="M14">\begin{document}$ ReF = 0 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M14.png"/></alternatives></inline-formula> it implies that Hamiltonian <i>H</i> is PT-asymmetry, but it is a sufficient condition, not necessary. The later is easier to operate in the experiment, but the study conditions are tighter, and it further requires that <inline-formula><tex-math id="M15">\begin{document}$ CPT\phi_n(x)=\phi_n(x) $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20230458_M15.png"/></alternatives></inline-formula>. If we only pay attention to whether PT-symmetry is broken, use the latter method is simpler. The former method is perhaps better to quantify the PT-symmetry broken part and the part of local PT-symmetry.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3