Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator

Author:

Guo Zhuang,Ouyang Feng,Lu Zhi-Zhou,Wang Meng-Yu,Tan Qing-Gui,Xie Cheng-Feng,Wei Bin,He Xing-Dao, , ,

Abstract

<sec>Optical frequency comb has shown great potential applications in many areas including molecular spectroscopy, RF photonics, millimeter wave generation, frequency metrology, atomic clock, and dense/ultra-dense wavelength division multiplexed high speed optical communications. Optical frequency comb in the microresonator supporting whispering-gallery mode has attracted widespread interest because of its advantages such as flexible repetition rate, wide bandwidth, and compact size. The exceptionally long photon lifetime and small modal volume enhance light-matter interaction, which enables us to realize intracavity nonlinear frequency conversions with low pump threshold. With the advantages of small size, low power consumption, wide spectral coverage and adjustable dispersion, the magnesium fluoride microresonator optical frequency comb has potential applications in optical communication and mid-infrared spectroscopy.</sec><sec>In this work, the spectral characteristics of the optical frequency comb generated by a magnesium fluoride whispering-gallery mode microbottle resonator platform are investigated. In order to optimize the spectral distribution of the optical frequency comb of the magnesium fluoride microbottle resonator, the second-order dispersion and higher-order dispersion of the bottle resonator structure under different curvatures and axial modes are solved iteratively by the finite element method, and the spectral evolutions of the optical frequency comb under different axial mode excitations are simulated by solving the nonlinear Schrödinger equation through the split-step Fourier method. The results show that near-zero anomalous dispersion tuning can be achieved in a wide bandwidth range by exciting low-order axial mode at an optimal radius of curvature, while the high-order axial mode will lead the microbottle resonator to present the weak normal dispersion. The weaker anomalous dispersion in the lower-order axial mode broadens the bandwidth of the optical comb, demonstrating that the third-order dispersion and the negative fourth-order dispersion can broaden the Kerr soliton optical comb; the weak normal dispersion in the higher-order axial mode suppresses the generation of the Kerr optical comb, and the Raman optical comb dominates. The selective excitation of Kerr soliton combs and Raman combs can be achieved by modulating the axial mode of the microbottle resonator under suitable pumping conditions. The present work provides guidance for designing the dispersion in magnesium fluoride microresonator and the experimental tuning of broadband Kerr soliton optical combs and Raman optical combs.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3