Acoustic manipulation of microparticles using a piezoelectric phononic crystal plate

Author:

Wang Jun,Cai Fei-Yan,Zhang Ru-Jun,Li Yong-Chuan,Zhou Wei,Li Fei,Deng Ke,Zheng Hai-Rong, , ,

Abstract

Acoustic tweezer is a promising device for manipulating particles, which does not need contact does not cause damage, or requires transparent materials. They have diverse applications in cell separation, tissue engineering, and material assembly. To control particle movement, this technology relies on the exchange of momentum between the particle and the acoustic field, generating an acoustic radiation force. Achieving high-performance acoustic tweezers necessitates the precise shaping of the acoustic fields. Traditionally, there are mainly two types of acoustic tweezers: bulk acoustic wave (BAW) and surface acoustic wave (SAW). The SAW-based acoustic tweezer operates at high frequencies, realizing precise manipulation. The BAW-based acoustic tweezer operates at lower frequencies and requires artificial structure on the transducer surface to shape the field. However, the separation of the artificial structure from the transducer brings complexity and instability into the manipulation process. In this study, we propose a novel approach to overcoming these challenges, that is, using piezoelectric phononic crystal plates to integrate the transducer and acoustic artificial structure. By designing the thickness, periodicity, and electrode width of the piezoelectric phononic crystal plate, we can excite the <i>A</i><sub>0</sub> Lamb wave mode and the periodic resonant mode, resulting in a periodic gradient field and a periodic weak gradient field, respectively. These fields enable particle to be trapped or levitated on the surface. To validate this approach, an experimental device is constructed, and successful particle manipulation is achieved by using Lamb wave mode or periodic resonant mode through using the piezoelectric phononic crystal plate. This technological breakthrough serves as a crucial foundation and experimental validation for developing the compact, low-energy and high-precision acoustic tweezers.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference27 articles.

1. Borgnis F E 1953 Rev. Mod. Phys. 25 653

2. Takahi H, Yasutaka H, Akio A, Hideki N, Masahiko K, Naoki I 1993 J. Acoust. Soc. Am. 93 154

3. Tatsuki F, Asier M, Bruce W, Thomas L H 2019 Appl. Phys. Lett. 115 064101

4. Hirayama R, Martinez P D, Masuda N, Subramanian S 2019 Nature 575 320

5. Smalley D E, Nygaard E, Squire K, Van W J, Rasmussen J, Gneiting S, Qaderi K, Goodsell J, Roger W, Lindsey M 2018 Nature 553 486

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3