Structural phase transition induced enhancement of carrier mobility of monolayer RuSe<sub>2</sub>

Author:

Lu Kang-Jun,Wang Yi-Fan,Xia Qian,Zhang Gui-Tao,Chen Qian,

Abstract

Transition metal dichalcogenides (TMDs) is an important member of two-dimensional material family, which has various crystal structures and physical properties, thus providing a broad platform for scientific research and device applications. The diversity of TMD's properties arises not only from their relatively large family but also from the variety of their crystal structure phases. The most common structure of TMD is the trigonal prismatic phase (<i>H</i> phase) and the octahedral phase (<i>T</i> phase). Studies have shown that, in addition to these two high-symmetry phases, TMD has other distorted phases. Distorted phase often exhibits different physical properties from symmetric phases and can perform better in certain systems. Because the structural differences between different distorted phases are sometimes very small, it is experimentally challenging to observe multiple distorted phases coexisting. Therefore, it is meaningful to theoretically investigate the structural stability and physical properties of different distorted phases. In this study, we investigate the structure and phase transition of monolayer RuSe<sub>2</sub> through first-principles calculation. While confirming that its ground state is a the dimerized phase (<inline-formula><tex-math id="M7">\begin{document}$T^\prime$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M7.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M7.png"/></alternatives></inline-formula> phase), we find the presence of another energetically competitive trimerized phase (<inline-formula><tex-math id="M8">\begin{document}$T^{\prime\prime\prime}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M8.png"/></alternatives></inline-formula> phase). By comparing the energy values of four different structures and combining the results of phonon spectra and molecular dynamics simulations, we predict the stability of the <inline-formula><tex-math id="M9">\begin{document}$T^{\prime\prime\prime}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M9.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M9.png"/></alternatives></inline-formula> phase at room temperature. Because the <i>H</i> phase and <i>T</i> phase of two-dimensional RuSe<sub>2</sub> have already been observed experimentally, and considering the fact that <inline-formula><tex-math id="M10">\begin{document}$T^{\prime\prime\prime}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M10.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M10.png"/></alternatives></inline-formula> phase has much lower energy than the <i>H</i> and <i>T</i> phases, it is highly likely that the <inline-formula><tex-math id="M11">\begin{document}$T^{\prime\prime\prime}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M11.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M11.png"/></alternatives></inline-formula> phase exists in experiment. Combining the calculations of the phase transition barrier and the molecular dynamics simulations, we anticipate that applying a slight stress to the <inline-formula><tex-math id="M12">\begin{document}$T^\prime$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M12.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M12.png"/></alternatives></inline-formula> phase structure at room temperature can induce a lattice transition from <inline-formula><tex-math id="M13">\begin{document}$T^\prime$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M13.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M13.png"/></alternatives></inline-formula>phase to <inline-formula><tex-math id="M14">\begin{document}$T^{\prime\prime\prime}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M14.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M14.png"/></alternatives></inline-formula> phase, resulting in significant changes in the band structure and carrier mobility, with the bandgap changing from an indirect bandgap of 1.11 eV to a direct bandgap of 0.71 eV, and the carrier mobility in the armchair direction increasing from <inline-formula><tex-math id="M15">\begin{document}$ 0.82 \times $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M15.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M15.png"/></alternatives></inline-formula><inline-formula><tex-math id="M15-1">\begin{document}$ 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M15-1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M15-1.png"/></alternatives></inline-formula> to <inline-formula><tex-math id="M16">\begin{document}$3.22 \times 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M16.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240557_M16.png"/></alternatives></inline-formula>, an approximately threefold enhancement. In this work, two possible coexisting distorted phases in monolayer RuSe<sub>2</sub> are compared with each other and studied, and their electronic structures and carrier mobilities are analyzed, thereby facilitating experimental research on two-dimensional RuSe<sub>2</sub> materials and their applications in future electronic devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3