Defect structure regulation and thermoelectric transfer performance in n-type Bi<sub>2–<i>x</i></sub> Sb<sub><i>x</i></sub>Te<sub>3–<i>y</i></sub>Se<sub><i>y</i></sub>-based compounds

Author:

Li Rui-Ying,Luo Ting-Ting,Li Mao,Chen Shuo,Yan Yong-Gao,Wu Jin-Song,Su Xian-Li,Zhang Qing-Jie,Tang Xin-Feng, , ,

Abstract

Bi<sub>2</sub>Te<sub>3</sub>-based compounds are thermoelectric materials with the best performance near room temperature. The existence of a large number of complex defects makes defect engineering a core stratagem for adjusting and improving the thermoelectric performance. Therefore, understanding and effectively controlling the existence form and concentration of defects is crucial for achieving high-thermoelectric performance in Bi<sub>2</sub>Te<sub>3</sub>-based alloy. Herein, a series of Cl doped n-type quaternary Bi<sub>2–<i>x</i></sub> Sb<sub><i>x</i></sub>Te<sub>3–<i>y</i></sub>Se<sub><i>y</i></sub> compounds is synthesized by the zone-melting method. The correlation between defect evolution process and thermoelectric performance is systematically investigated by first-principles calculation and experiments. Alloying Sb on Bi site and Se on Te site induce charged structural defects, leading to a significant change in the carrier concentration. For Bi<sub>2–<i>x</i></sub> Sb<sub><i>x</i></sub>Te<sub>2.994</sub>Cl<sub>0.006</sub> compounds, alloying Sb on Bi site reduces the formation energy of the <inline-formula><tex-math id="M6">\begin{document}${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M6.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M6.png"/></alternatives></inline-formula> antisite defect, which generates the antisite defect <inline-formula><tex-math id="M7">\begin{document}${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M7.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M7.png"/></alternatives></inline-formula> and accompanied with the increase of the minority carrier concentration from 2.09×10<sup>16</sup> to 3.99×10<sup>17</sup> cm<sup>–3</sup>. The increase of the minority carrier severely deteriorates the electrical transport properties. In contrast, alloying Se in the Bi<sub>1.8</sub>Sb<sub>0.2</sub>Te<sub>2.994–<i>y</i></sub>Se<sub><i>y</i></sub>Cl<sub>0.006</sub> compound significantly lowers the formation energy of the complex defect <inline-formula><tex-math id="M8">\begin{document}${\mathrm{S}}{{\mathrm{e}}_{{\mathrm{Te}}}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M8.png"/></alternatives></inline-formula>+<inline-formula><tex-math id="M9">\begin{document}${\mathrm{S}}{{\mathrm{b}}_{{\mathrm{Bi}}}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M9.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M9.png"/></alternatives></inline-formula>, which becomes more energetically favorable and suppresses the formation of the antisite defect <inline-formula><tex-math id="M10">\begin{document}${\mathrm{S}}{{\text{b}}_{{\mathrm{Te}}}}_{_2}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M10.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20240098_M10.png"/></alternatives></inline-formula>. As a result, the concentration of minority carriers decreases to 1.46×10<sup>16</sup> cm<sup>–3</sup>. This eliminates the deterioration effect of the minority carrier on the electrical transport properties of the material and greatly improves the power factor. A maximum power factor of 4.49 mW/(m·K<sup>2</sup>) is achieved for Bi<sub>1.8</sub>Sb<sub>0.2</sub>Te<sub>2.944</sub>Se<sub>0.05</sub>Cl<sub>0.006</sub> compound at room temperature. By reducing thermal conductivity through intensifying the phonon scattering via alloying Sb and Se, the maximum <i>ZT</i> value of 0.98 is attained for Bi<sub>1.8</sub>Sb<sub>0.2</sub>Te<sub>2.844</sub>Se<sub>0.15</sub>Cl<sub>0.006</sub> compound at room temperature. Our finding provides an important guidance for adjusting point defects, carrier concentrations, and thermoelectric performances in Bi<sub>2</sub>Te<sub>3</sub>-based compounds with complex compositions.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3