Recent advances in thermal transport theory of metals

Author:

Wang Ao,Sheng Yu-Fei,Bao Hua, ,

Abstract

Metal is one of the most widely used engineering materials. In contrast to the extensive research dedicated to their mechanical properties, studies on the thermal conductivity of metals remain relatively rare. The understanding of thermal transport mechanisms in metals is mainly through the Wiedemann-Franz Law established more than a century ago. The thermal conductivity of metal is related to both the electron transport and the lattice vibration. An in-depth understanding of the thermal transport mechanism in metal is imperative for optimizing their practical applications. This review first discusses the history of the thermal transport theory in metals, including the Wiedemann-Franz law and models for calculating phonon thermal conductivity in metal. The recently developed first-principles based mode-level electron-phonon interaction method for determining the thermal transport properties of metals is briefly introduced. Then we summarize recent theoretical studies on the thermal conductivities of elemental metals, intermetallics, and metallic ceramics. The value of thermal conductivity, phonon contribution to total thermal conductivity, the influence of electron-phonon interaction on thermal transport, and the deviation of the Lorenz number are comprehensively discussed. Moreover, the thermal transport properties of metallic nanostructures are summarized. The size effect of thermal transport and the Lorenz number obtained from experiments and calculations are compared. Thermal transport properties including the phonon contribution to total thermal conductivity and the Lorenz number in two-dimensional metals are also mentioned. Finally, the influence of temperature, pressure, and magnetic field on thermal transport in metal are also discussed. The deviation of the Lorenz number at low temperatures is due to the different electron-phonon scattering mechanisms for thermal and electrical transport. The mechanism for the increase of thermal conductivity in metals induced by pressure varies in different kinds of metals and is related to the electron state at the Fermi level. The effect of magnetic field on thermal transport is related to the coupling between the electron and the magnetic field, therefore the electron distribution in the Brillouin zone is an important factor. In addition, this review also looks forward to the future research directions of metal thermal transport theory.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3